Genome-wide association study for female fertility in Nordic Red cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Johanna K. Höglund, Bart Buitenhuis, Bernt Guldbrandtsen, Mogens S. Lund, Goutam Sahana

ABSTRACT

BACKGROUND: The Nordic Red Cattle (NRC) consists of animls belonging to the Danish Red, Finnish Ayrshire, and Swedish Red breeds. Compared to the Holstein breed, NRC animals are smaller, have a shorter calving interval, lower mastitis incidence and lower rates of stillborn calves, however they produce less milk, fat and protein. Female fertility is an important trait for the dairy cattle farmer. Selection decisions in female fertilty in NRC are based on the female fertility index (FTI). FTI is a composite index including a number of sub-indices describing aspects of female fertility in dairy cattle. The sub-traits of FTI are: number of inseminations per conception (AIS) in cows (C) and heifers (H), the length in days of the interval from calving to first insemination (ICF) in cows, days from first to last insemination (IFL) in cows and heifers, and 56-day non-return rate (NRR) in cows and heifers. The aim of this study was first to identify QTL for FTI by conducting a genome scan for variants associated with fertility index using imputed whole genome sequence data based on 4207 Nordic Red sires, and subsequently analyzing which of the sub-traits were affected by each FTI QTL by associating them with the sub-traits. RESULTS: A total 17,388 significant SNP markers (-log10(P) > 8.25) were detected for FTI distributed over 25 chromosomes. The chromosomes with the most significant markers were tested for associations with the underlying sub-traits: BTA1 (822 SNP), BTA2 (220 SNP), BTA3 (83 SNP), BTA5 (195 SNP), two regions on BTA6 (503 SNP), BTA13 (980 SNP), BTA15 (23 SNP), BTA20 (345 SNP), and BTA24 (104 SNP). The fertility traits underlying the FTI peak area were: BTA1 (IFLC, IFLH), BTA2 (AISH, IFLH, NRRH), BTA3 (AISH, NRRH), BTA5 (AISC, AISH, IFLH), BTA6 (region 1: AISH, NRRH; region 2: AISH, IFLH), BTA13 (IFLH, IFLC), BTA15 (IFLC, NRRH), and BTA24 (AISH, IFLH). For BTA20 all sub-traits had SNP markers with a -log10(P) > 10. Furthermore the genes assigned to the most significant SNP for FTI were located on BTA6 (GPR125), BTA13 (ANKRD60), BTA15 (GRAMD1B), and BTA24 (ZNF521). CONCLUSION: This study 1) shows that many markers within FTI QTL regions were significantly associated with both AISH and IFLH, and 2) identified candidate genes for FTI located on BTA6 (GPR125), BTA13 (ANKRD60), BTA15 (GRAMD1B), and BTA24 (ZNF521). It is not known how the genes/variants identified in this study regulate female fertility, however the majority of these genes were involved in protein binding, 3) a SNP in a QTL region for FTI on BTA20 was previously validated in three cattle breeds. More... »

PAGES

110

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12863-015-0269-x

DOI

http://dx.doi.org/10.1186/s12863-015-0269-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037612160

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26369327


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fertility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics Aarhus University, P.O. Box 50, DK 8830, Tjele, Denmark", 
            "Present address: Department of Animal Science, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6glund", 
        "givenName": "Johanna K.", 
        "id": "sg:person.01203034260.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203034260.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics Aarhus University, P.O. Box 50, DK 8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buitenhuis", 
        "givenName": "Bart", 
        "id": "sg:person.0650267300.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650267300.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics Aarhus University, P.O. Box 50, DK 8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guldbrandtsen", 
        "givenName": "Bernt", 
        "id": "sg:person.0655324301.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655324301.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics Aarhus University, P.O. Box 50, DK 8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lund", 
        "givenName": "Mogens S.", 
        "id": "sg:person.0740177106.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740177106.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics Aarhus University, P.O. Box 50, DK 8830, Tjele, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahana", 
        "givenName": "Goutam", 
        "id": "sg:person.0727046246.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046246.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2156-15-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004306245", 
          "https://doi.org/10.1186/1471-2156-15-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02149.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007781154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m113.459826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007973821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3690506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010513593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013476592", 
          "https://doi.org/10.1186/1471-2164-14-897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/mol.108.050005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015053514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015989191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2010-3483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019484388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3866105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022179907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-4-r42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097093", 
          "https://doi.org/10.1186/gb-2009-10-4-r42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2014-8141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024466372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028025360", 
          "https://doi.org/10.1038/ng.3034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033548087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034630040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040718046", 
          "https://doi.org/10.1186/1471-2164-15-728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02148.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040759414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043446290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050796986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(06)72406-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077281959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2008-1104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077890248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(83)81790-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081983994"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: The Nordic Red Cattle (NRC) consists of animls belonging to the Danish Red, Finnish Ayrshire, and Swedish Red breeds. Compared to the Holstein breed, NRC animals are smaller, have a shorter calving interval, lower mastitis incidence and lower rates of stillborn calves, however they produce less milk, fat and protein. Female fertility is an important trait for the dairy cattle farmer. Selection decisions in female fertilty in NRC are based on the female fertility index (FTI). FTI is a composite index including a number of sub-indices describing aspects of female fertility in dairy cattle. The sub-traits of FTI are: number of inseminations per conception (AIS) in cows (C) and heifers (H), the length in days of the interval from calving to first insemination (ICF) in cows, days from first to last insemination (IFL) in cows and heifers, and 56-day non-return rate (NRR) in cows and heifers. The aim of this study was first to identify QTL for FTI by conducting a genome scan for variants associated with fertility index using imputed whole genome sequence data based on 4207 Nordic Red sires, and subsequently analyzing which of the sub-traits were affected by each FTI QTL by associating them with the sub-traits.\nRESULTS: A total 17,388 significant SNP markers (-log10(P)\u2009> 8.25) were detected for FTI distributed over 25 chromosomes. The chromosomes with the most significant markers were tested for associations with the underlying sub-traits: BTA1 (822 SNP), BTA2 (220 SNP), BTA3 (83 SNP), BTA5 (195 SNP), two regions on BTA6 (503 SNP), BTA13 (980 SNP), BTA15 (23 SNP), BTA20 (345 SNP), and BTA24 (104 SNP). The fertility traits underlying the FTI peak area were: BTA1 (IFLC, IFLH), BTA2 (AISH, IFLH, NRRH), BTA3 (AISH, NRRH), BTA5 (AISC, AISH, IFLH), BTA6 (region 1: AISH, NRRH; region 2: AISH, IFLH), BTA13 (IFLH, IFLC), BTA15 (IFLC, NRRH), and BTA24 (AISH, IFLH). For BTA20 all sub-traits had SNP markers with a -log10(P)\u2009> 10. Furthermore the genes assigned to the most significant SNP for FTI were located on BTA6 (GPR125), BTA13 (ANKRD60), BTA15 (GRAMD1B), and BTA24 (ZNF521).\nCONCLUSION: This study 1) shows that many markers within FTI QTL regions were significantly associated with both AISH and IFLH, and 2) identified candidate genes for FTI located on BTA6 (GPR125), BTA13 (ANKRD60), BTA15 (GRAMD1B), and BTA24 (ZNF521). It is not known how the genes/variants identified in this study regulate female fertility, however the majority of these genes were involved in protein binding, 3) a SNP in a QTL region for FTI on BTA20 was previously validated in three cattle breeds.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12863-015-0269-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Genome-wide association study for female fertility in Nordic Red cattle", 
    "pagination": "110", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b32bef768eabf5d3f70e128b01b1f892dca2fd0af395944fd08d8221b31d3959"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26369327"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12863-015-0269-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037612160"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12863-015-0269-x", 
      "https://app.dimensions.ai/details/publication/pub.1037612160"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12863-015-0269-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-015-0269-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-015-0269-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-015-0269-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-015-0269-x'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      68 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12863-015-0269-x schema:about N2f0d1a9da470433d853f534e0eabc909
2 N53d62d568d724bc0b5409f9afaae4059
3 N5f864d25487c424f9bb2c64c751e2474
4 N6cccdadd77aa452ab61e85f85babe9d6
5 N84a55929fba14291bd13a33b90ad6ee6
6 N8680c4d244d645a2924caeb20bc7921e
7 N8ee43791178f43ef85c3b5a7d50cbc4a
8 N96ee15ddcd684d1784cb475222e59e2f
9 N9acc2de81ef342209cdb4988485b9cf6
10 Na138a374e6a94ba0b73284eeba197808
11 Nacce4cc7773d4ac898f1b13406ed4fb4
12 Ne66bb67c6fb041e2875f3eaf91ac2936
13 Nf7ae65c92fcd48d282dcc27a9d789fd8
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author Nfa172181fd784b478c92ea9fed488a1d
17 schema:citation sg:pub.10.1038/ng.3034
18 sg:pub.10.1038/ng1702
19 sg:pub.10.1186/1471-2156-15-8
20 sg:pub.10.1186/1471-2164-14-897
21 sg:pub.10.1186/1471-2164-15-728
22 sg:pub.10.1186/gb-2009-10-4-r42
23 https://doi.org/10.1016/j.ajhg.2009.01.005
24 https://doi.org/10.1074/jbc.m113.459826
25 https://doi.org/10.1093/bioinformatics/btp324
26 https://doi.org/10.1093/bioinformatics/btp352
27 https://doi.org/10.1093/nar/gkq1235
28 https://doi.org/10.1093/nar/gkt1196
29 https://doi.org/10.1101/gr.107524.110
30 https://doi.org/10.1101/gr.3690506
31 https://doi.org/10.1101/gr.3866105
32 https://doi.org/10.1111/j.1365-2052.2010.02064.x
33 https://doi.org/10.1111/j.1365-2052.2010.02148.x
34 https://doi.org/10.1111/j.1365-2052.2010.02149.x
35 https://doi.org/10.1124/mol.108.050005
36 https://doi.org/10.1371/journal.pgen.1000529
37 https://doi.org/10.1371/journal.pgen.1004049
38 https://doi.org/10.3168/jds.2008-1104
39 https://doi.org/10.3168/jds.2010-3483
40 https://doi.org/10.3168/jds.2014-8141
41 https://doi.org/10.3168/jds.s0022-0302(06)72406-7
42 https://doi.org/10.3168/jds.s0022-0302(83)81790-1
43 schema:datePublished 2015-12
44 schema:datePublishedReg 2015-12-01
45 schema:description BACKGROUND: The Nordic Red Cattle (NRC) consists of animls belonging to the Danish Red, Finnish Ayrshire, and Swedish Red breeds. Compared to the Holstein breed, NRC animals are smaller, have a shorter calving interval, lower mastitis incidence and lower rates of stillborn calves, however they produce less milk, fat and protein. Female fertility is an important trait for the dairy cattle farmer. Selection decisions in female fertilty in NRC are based on the female fertility index (FTI). FTI is a composite index including a number of sub-indices describing aspects of female fertility in dairy cattle. The sub-traits of FTI are: number of inseminations per conception (AIS) in cows (C) and heifers (H), the length in days of the interval from calving to first insemination (ICF) in cows, days from first to last insemination (IFL) in cows and heifers, and 56-day non-return rate (NRR) in cows and heifers. The aim of this study was first to identify QTL for FTI by conducting a genome scan for variants associated with fertility index using imputed whole genome sequence data based on 4207 Nordic Red sires, and subsequently analyzing which of the sub-traits were affected by each FTI QTL by associating them with the sub-traits. RESULTS: A total 17,388 significant SNP markers (-log10(P) > 8.25) were detected for FTI distributed over 25 chromosomes. The chromosomes with the most significant markers were tested for associations with the underlying sub-traits: BTA1 (822 SNP), BTA2 (220 SNP), BTA3 (83 SNP), BTA5 (195 SNP), two regions on BTA6 (503 SNP), BTA13 (980 SNP), BTA15 (23 SNP), BTA20 (345 SNP), and BTA24 (104 SNP). The fertility traits underlying the FTI peak area were: BTA1 (IFLC, IFLH), BTA2 (AISH, IFLH, NRRH), BTA3 (AISH, NRRH), BTA5 (AISC, AISH, IFLH), BTA6 (region 1: AISH, NRRH; region 2: AISH, IFLH), BTA13 (IFLH, IFLC), BTA15 (IFLC, NRRH), and BTA24 (AISH, IFLH). For BTA20 all sub-traits had SNP markers with a -log10(P) > 10. Furthermore the genes assigned to the most significant SNP for FTI were located on BTA6 (GPR125), BTA13 (ANKRD60), BTA15 (GRAMD1B), and BTA24 (ZNF521). CONCLUSION: This study 1) shows that many markers within FTI QTL regions were significantly associated with both AISH and IFLH, and 2) identified candidate genes for FTI located on BTA6 (GPR125), BTA13 (ANKRD60), BTA15 (GRAMD1B), and BTA24 (ZNF521). It is not known how the genes/variants identified in this study regulate female fertility, however the majority of these genes were involved in protein binding, 3) a SNP in a QTL region for FTI on BTA20 was previously validated in three cattle breeds.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf Na61c98e48c5c447ca84eb8ed93a5a2c2
50 Nd39a1718e35247d288a08bdca7b73703
51 sg:journal.1024251
52 schema:name Genome-wide association study for female fertility in Nordic Red cattle
53 schema:pagination 110
54 schema:productId N39e2fc3e6526448fa539ac654980dc46
55 N95c520cb439748f685a1cbb18687dcfd
56 N9ff1cc2c22e142199f39781b73c7309f
57 Nade0b3bf10af4d4494508af00f103785
58 Neb543850bf4844e0baa149efc2294d5a
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037612160
60 https://doi.org/10.1186/s12863-015-0269-x
61 schema:sdDatePublished 2019-04-10T15:01
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ne238dcb09fa545b1a18a70a5c1556206
64 schema:url http://link.springer.com/10.1186%2Fs12863-015-0269-x
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N2f0d1a9da470433d853f534e0eabc909 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Fertility
70 rdf:type schema:DefinedTerm
71 N39e2fc3e6526448fa539ac654980dc46 schema:name dimensions_id
72 schema:value pub.1037612160
73 rdf:type schema:PropertyValue
74 N53d62d568d724bc0b5409f9afaae4059 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Polymorphism, Single Nucleotide
76 rdf:type schema:DefinedTerm
77 N5f864d25487c424f9bb2c64c751e2474 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Cattle
79 rdf:type schema:DefinedTerm
80 N6cccdadd77aa452ab61e85f85babe9d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Female
82 rdf:type schema:DefinedTerm
83 N7076f3b72dde4569b01ef9fbbfecf5c2 rdf:first sg:person.0650267300.38
84 rdf:rest Ne133a1db42414e02b11b55a3eb30959b
85 N84a55929fba14291bd13a33b90ad6ee6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Genetic Association Studies
87 rdf:type schema:DefinedTerm
88 N8680c4d244d645a2924caeb20bc7921e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Phenotype
90 rdf:type schema:DefinedTerm
91 N8ee43791178f43ef85c3b5a7d50cbc4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Quantitative Trait, Heritable
93 rdf:type schema:DefinedTerm
94 N95c520cb439748f685a1cbb18687dcfd schema:name nlm_unique_id
95 schema:value 100966978
96 rdf:type schema:PropertyValue
97 N96ee15ddcd684d1784cb475222e59e2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Animals
99 rdf:type schema:DefinedTerm
100 N9acc2de81ef342209cdb4988485b9cf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Quantitative Trait Loci
102 rdf:type schema:DefinedTerm
103 N9d3ba2f6c21a417980042c09501515db rdf:first sg:person.0727046246.31
104 rdf:rest rdf:nil
105 N9ff1cc2c22e142199f39781b73c7309f schema:name readcube_id
106 schema:value b32bef768eabf5d3f70e128b01b1f892dca2fd0af395944fd08d8221b31d3959
107 rdf:type schema:PropertyValue
108 Na138a374e6a94ba0b73284eeba197808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Genome
110 rdf:type schema:DefinedTerm
111 Na61c98e48c5c447ca84eb8ed93a5a2c2 schema:issueNumber 1
112 rdf:type schema:PublicationIssue
113 Na676db36e71b46bba59d44726c047f4c rdf:first sg:person.0740177106.57
114 rdf:rest N9d3ba2f6c21a417980042c09501515db
115 Nacce4cc7773d4ac898f1b13406ed4fb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name High-Throughput Nucleotide Sequencing
117 rdf:type schema:DefinedTerm
118 Nade0b3bf10af4d4494508af00f103785 schema:name pubmed_id
119 schema:value 26369327
120 rdf:type schema:PropertyValue
121 Nd39a1718e35247d288a08bdca7b73703 schema:volumeNumber 16
122 rdf:type schema:PublicationVolume
123 Ne133a1db42414e02b11b55a3eb30959b rdf:first sg:person.0655324301.37
124 rdf:rest Na676db36e71b46bba59d44726c047f4c
125 Ne238dcb09fa545b1a18a70a5c1556206 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Ne66bb67c6fb041e2875f3eaf91ac2936 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Genome-Wide Association Study
129 rdf:type schema:DefinedTerm
130 Neb543850bf4844e0baa149efc2294d5a schema:name doi
131 schema:value 10.1186/s12863-015-0269-x
132 rdf:type schema:PropertyValue
133 Nf7ae65c92fcd48d282dcc27a9d789fd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Breeding
135 rdf:type schema:DefinedTerm
136 Nfa172181fd784b478c92ea9fed488a1d rdf:first sg:person.01203034260.48
137 rdf:rest N7076f3b72dde4569b01ef9fbbfecf5c2
138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
139 schema:name Biological Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
142 schema:name Genetics
143 rdf:type schema:DefinedTerm
144 sg:journal.1024251 schema:issn 1471-2156
145 schema:name BMC Genetics
146 rdf:type schema:Periodical
147 sg:person.01203034260.48 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
148 schema:familyName Höglund
149 schema:givenName Johanna K.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203034260.48
151 rdf:type schema:Person
152 sg:person.0650267300.38 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
153 schema:familyName Buitenhuis
154 schema:givenName Bart
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650267300.38
156 rdf:type schema:Person
157 sg:person.0655324301.37 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
158 schema:familyName Guldbrandtsen
159 schema:givenName Bernt
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655324301.37
161 rdf:type schema:Person
162 sg:person.0727046246.31 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
163 schema:familyName Sahana
164 schema:givenName Goutam
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727046246.31
166 rdf:type schema:Person
167 sg:person.0740177106.57 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
168 schema:familyName Lund
169 schema:givenName Mogens S.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740177106.57
171 rdf:type schema:Person
172 sg:pub.10.1038/ng.3034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028025360
173 https://doi.org/10.1038/ng.3034
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
176 https://doi.org/10.1038/ng1702
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2156-15-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004306245
179 https://doi.org/10.1186/1471-2156-15-8
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2164-14-897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013476592
182 https://doi.org/10.1186/1471-2164-14-897
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2164-15-728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040718046
185 https://doi.org/10.1186/1471-2164-15-728
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/gb-2009-10-4-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097093
188 https://doi.org/10.1186/gb-2009-10-4-r42
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ajhg.2009.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033548087
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1074/jbc.m113.459826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007973821
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/nar/gkq1235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050796986
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/nar/gkt1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015989191
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1101/gr.3690506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010513593
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1101/gr.3866105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022179907
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/j.1365-2052.2010.02064.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015623410
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1365-2052.2010.02148.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040759414
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.1365-2052.2010.02149.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007781154
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1124/mol.108.050005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015053514
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pgen.1004049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034630040
219 rdf:type schema:CreativeWork
220 https://doi.org/10.3168/jds.2008-1104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077890248
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3168/jds.2010-3483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019484388
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3168/jds.2014-8141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024466372
225 rdf:type schema:CreativeWork
226 https://doi.org/10.3168/jds.s0022-0302(06)72406-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077281959
227 rdf:type schema:CreativeWork
228 https://doi.org/10.3168/jds.s0022-0302(83)81790-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081983994
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
231 schema:name Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics Aarhus University, P.O. Box 50, DK 8830, Tjele, Denmark
232 Present address: Department of Animal Science, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...