A colorectal cancer prediction model using traditional and genetic risk scores in Koreans View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Keum Ji Jung, Daeyoun Won, Christina Jeon, Soriul Kim, Tae Il Kim, Sun Ha Jee, Terri H Beaty

ABSTRACT

BACKGROUND: Genome-wide association studies have identified numerous single nucleotide polymorphisms (SNPs) as associated with colorectal cancer (CRC) risk in populations of European descent. However, their utility for predicting risk to CRC in Asians remains unknown. A case-cohort study (random sub-cohort N=1,685) from the Korean Cancer Prevention Study-II (KCPS-II) (N=145,842) was used. Twenty-three SNPs identified in previous 47 studies were genotyped on the KCPS-II sub-cohort members. A genetic risk score (GRS) was calculated by summing the number of risk alleles over all SNPs. Prediction models with or without GRS were evaluated in terms of the area under the receiver operating characteristic curve (AUROC) and the continuous net reclassification index (NRI). RESULTS: Seven of 23 SNPs showed significant association with CRC and rectal cancer in Koreans, but not with colon cancer alone. AUROCs (95% CI) for traditional risk score (TRS) alone and TRS plus GRS were 0.73 (0.69-0.78) and 0.74 (0.70-0.78) for CRC, and 0.71 (0.65-0.77) and 0.74 (0.68-0.79) for rectal cancer, respectively. The NRI (95% CI) for a prediction model with GRS compared to the model with TRS alone was 0.17 (-0.05-0.37) for CRC and 0.41 (0.10-0.68) for rectal cancer alone. CONCLUSION: Our results indicate genetic variants may be useful for predicting risk to CRC in the Koreans, especially risk for rectal cancer alone. Moreover, this study suggests effective prediction models for colon and rectal cancer should be developed separately. More... »

PAGES

49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12863-015-0207-y

DOI

http://dx.doi.org/10.1186/s12863-015-0207-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036712301

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25956580


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Republic of Korea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Public Health, Graduate School, Yonsei University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Keum Ji", 
        "id": "sg:person.0643036432.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643036432.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of Korea", 
          "id": "https://www.grid.ac/institutes/grid.411947.e", 
          "name": [
            "The Catholic University of Korea, Seoul Saint Mary\u2019s Hospital, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Won", 
        "givenName": "Daeyoun", 
        "id": "sg:person.01073656341.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073656341.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Institute for Health Promotion and Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, 50 Yonse-ro, Seodaemun-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeon", 
        "givenName": "Christina", 
        "id": "sg:person.01141771541.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141771541.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Public Health, Graduate School, Yonsei University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Soriul", 
        "id": "sg:person.0714775365.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714775365.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae Il", 
        "id": "sg:person.015302742440.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015302742440.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Institute for Health Promotion and Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, 50 Yonse-ro, Seodaemun-gu, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jee", 
        "givenName": "Sun Ha", 
        "id": "sg:person.0737416401.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737416401.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beaty", 
        "givenName": "Terri H", 
        "id": "sg:person.012346226777.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346226777.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002420498", 
          "https://doi.org/10.1038/ng.111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pros.22661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006182299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200007133430201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007171562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0023196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007480749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2011-300537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015953404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5808/gi.2012.10.3.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019513163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.08-3064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020825027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(10)61267-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022889335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddr523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024528737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.002938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025060934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.002938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025060934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025133227", 
          "https://doi.org/10.1038/nature08185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025133227", 
          "https://doi.org/10.1038/nature08185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.003044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026318867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.003044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026318867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029660577", 
          "https://doi.org/10.1038/nrg1916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2014.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034785532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0088079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041369912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045441389", 
          "https://doi.org/10.1038/ng.133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canep.2012.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047127504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-013-0204-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051143760", 
          "https://doi.org/10.1007/s10552-013-0204-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-150-8-200904210-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073710737"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Genome-wide association studies have identified numerous single nucleotide polymorphisms (SNPs) as associated with colorectal cancer (CRC) risk in populations of European descent. However, their utility for predicting risk to CRC in Asians remains unknown. A case-cohort study (random sub-cohort N=1,685) from the Korean Cancer Prevention Study-II (KCPS-II) (N=145,842) was used. Twenty-three SNPs identified in previous 47 studies were genotyped on the KCPS-II sub-cohort members. A genetic risk score (GRS) was calculated by summing the number of risk alleles over all SNPs. Prediction models with or without GRS were evaluated in terms of the area under the receiver operating characteristic curve (AUROC) and the continuous net reclassification index (NRI).\nRESULTS: Seven of 23 SNPs showed significant association with CRC and rectal cancer in Koreans, but not with colon cancer alone. AUROCs (95% CI) for traditional risk score (TRS) alone and TRS plus GRS were 0.73 (0.69-0.78) and 0.74 (0.70-0.78) for CRC, and 0.71 (0.65-0.77) and 0.74 (0.68-0.79) for rectal cancer, respectively. The NRI (95% CI) for a prediction model with GRS compared to the model with TRS alone was 0.17 (-0.05-0.37) for CRC and 0.41 (0.10-0.68) for rectal cancer alone.\nCONCLUSION: Our results indicate genetic variants may be useful for predicting risk to CRC in the Koreans, especially risk for rectal cancer alone. Moreover, this study suggests effective prediction models for colon and rectal cancer should be developed separately.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12863-015-0207-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "A colorectal cancer prediction model using traditional and genetic risk scores in Koreans", 
    "pagination": "49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aee25960e4ac4e423d4be8531f911b9041887d7ce94d6923142992ffabd8c34b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25956580"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12863-015-0207-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036712301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12863-015-0207-y", 
      "https://app.dimensions.ai/details/publication/pub.1036712301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12863-015-0207-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-015-0207-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-015-0207-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-015-0207-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-015-0207-y'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      66 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12863-015-0207-y schema:about N0a487d2625e24694a662c393dc6f891c
2 N250febb1749347679d08aabcfc8214e0
3 N3c9699d5aee3467bb4454e968855018a
4 N4ab013685ffe450dba30dbdf5084065a
5 N53afcc55e7b742bbb7cea3ee8dc8c7e8
6 N68933d73e2784935b406489ebbdbfa06
7 N76d08f60e8b64b66ab1570a6cec965a0
8 N7f06c5a0b9f649bbabea3b83a15ae24c
9 N96e6f3fd03c4415db62998a5c7fa0e29
10 Na925a17db1e74aed89379d21660f7ee5
11 Nb1786b3773fb446f9a5c6840694b6df9
12 Nb8bc47962f1a48649f2470dc0566fb76
13 Nb8d8c9a0a4584fc3800406eb69cb195f
14 Nc18e2a0d407b4caba13a286bfe86bb05
15 Nca68f2e5445e4ab9b8d6a7e630c3d945
16 Ndf0cf3ed3f524263aece4436959efe52
17 Ne64021232ac34b2383fd238aca7b394d
18 Nf5b6eda401484d27b507e7666f3e737c
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author N1b4ca53d31fe4fcc8b97cd53a700f3d9
22 schema:citation sg:pub.10.1007/s10552-013-0204-2
23 sg:pub.10.1038/nature08185
24 sg:pub.10.1038/ng.111
25 sg:pub.10.1038/ng.133
26 sg:pub.10.1038/nrg1916
27 https://doi.org/10.1002/pros.22661
28 https://doi.org/10.1016/j.canep.2012.12.008
29 https://doi.org/10.1016/j.metabol.2014.07.006
30 https://doi.org/10.1016/s0140-6736(10)61267-6
31 https://doi.org/10.1056/nejm200007133430201
32 https://doi.org/10.1093/hmg/ddr523
33 https://doi.org/10.1136/gutjnl-2011-300537
34 https://doi.org/10.1161/strokeaha.113.002938
35 https://doi.org/10.1161/strokeaha.113.003044
36 https://doi.org/10.1167/iovs.08-3064
37 https://doi.org/10.1371/journal.pone.0023196
38 https://doi.org/10.1371/journal.pone.0088079
39 https://doi.org/10.5808/gi.2012.10.3.175
40 https://doi.org/10.7326/0003-4819-150-8-200904210-00008
41 schema:datePublished 2015-12
42 schema:datePublishedReg 2015-12-01
43 schema:description BACKGROUND: Genome-wide association studies have identified numerous single nucleotide polymorphisms (SNPs) as associated with colorectal cancer (CRC) risk in populations of European descent. However, their utility for predicting risk to CRC in Asians remains unknown. A case-cohort study (random sub-cohort N=1,685) from the Korean Cancer Prevention Study-II (KCPS-II) (N=145,842) was used. Twenty-three SNPs identified in previous 47 studies were genotyped on the KCPS-II sub-cohort members. A genetic risk score (GRS) was calculated by summing the number of risk alleles over all SNPs. Prediction models with or without GRS were evaluated in terms of the area under the receiver operating characteristic curve (AUROC) and the continuous net reclassification index (NRI). RESULTS: Seven of 23 SNPs showed significant association with CRC and rectal cancer in Koreans, but not with colon cancer alone. AUROCs (95% CI) for traditional risk score (TRS) alone and TRS plus GRS were 0.73 (0.69-0.78) and 0.74 (0.70-0.78) for CRC, and 0.71 (0.65-0.77) and 0.74 (0.68-0.79) for rectal cancer, respectively. The NRI (95% CI) for a prediction model with GRS compared to the model with TRS alone was 0.17 (-0.05-0.37) for CRC and 0.41 (0.10-0.68) for rectal cancer alone. CONCLUSION: Our results indicate genetic variants may be useful for predicting risk to CRC in the Koreans, especially risk for rectal cancer alone. Moreover, this study suggests effective prediction models for colon and rectal cancer should be developed separately.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf Nb0ba776a1ea7400c950e72ab45c38e67
48 Ncbf6508654de48f58162c43d5bc3c77b
49 sg:journal.1024251
50 schema:name A colorectal cancer prediction model using traditional and genetic risk scores in Koreans
51 schema:pagination 49
52 schema:productId N47dfaefb6f174456918d6debf9b867ff
53 N49c40fc8495a47b085e0187d0a1601f8
54 N6566501e0f744877a867c987410d857f
55 Ne3411ea75f874708a5c0fab8ddacbe90
56 Nfad48523398c4abaa51182aecabc904a
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036712301
58 https://doi.org/10.1186/s12863-015-0207-y
59 schema:sdDatePublished 2019-04-11T09:57
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nd6a2a722ddbe46f997e263fadb2041d4
62 schema:url http://link.springer.com/10.1186%2Fs12863-015-0207-y
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0a487d2625e24694a662c393dc6f891c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Adult
68 rdf:type schema:DefinedTerm
69 N1b4ca53d31fe4fcc8b97cd53a700f3d9 rdf:first sg:person.0643036432.30
70 rdf:rest Nc2729a06832645008f8ad1c29d55cb46
71 N250febb1749347679d08aabcfc8214e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Cohort Studies
73 rdf:type schema:DefinedTerm
74 N3c9699d5aee3467bb4454e968855018a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Asian Continental Ancestry Group
76 rdf:type schema:DefinedTerm
77 N47dfaefb6f174456918d6debf9b867ff schema:name nlm_unique_id
78 schema:value 100966978
79 rdf:type schema:PropertyValue
80 N49c40fc8495a47b085e0187d0a1601f8 schema:name pubmed_id
81 schema:value 25956580
82 rdf:type schema:PropertyValue
83 N4ab013685ffe450dba30dbdf5084065a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Colorectal Neoplasms
85 rdf:type schema:DefinedTerm
86 N53afcc55e7b742bbb7cea3ee8dc8c7e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Polymorphism, Single Nucleotide
88 rdf:type schema:DefinedTerm
89 N6566501e0f744877a867c987410d857f schema:name doi
90 schema:value 10.1186/s12863-015-0207-y
91 rdf:type schema:PropertyValue
92 N68933d73e2784935b406489ebbdbfa06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Republic of Korea
94 rdf:type schema:DefinedTerm
95 N76d08f60e8b64b66ab1570a6cec965a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Genome-Wide Association Study
97 rdf:type schema:DefinedTerm
98 N7f06c5a0b9f649bbabea3b83a15ae24c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Models, Theoretical
100 rdf:type schema:DefinedTerm
101 N8e702c58e35046db9e403c32dd9dd482 rdf:first sg:person.01141771541.95
102 rdf:rest Nf9c5862107db4a19bf9bbd121cb42409
103 N95e7512304d7486992f30568a43a4dce rdf:first sg:person.012346226777.92
104 rdf:rest rdf:nil
105 N96e6f3fd03c4415db62998a5c7fa0e29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Risk Factors
107 rdf:type schema:DefinedTerm
108 Na925a17db1e74aed89379d21660f7ee5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Male
110 rdf:type schema:DefinedTerm
111 Nb0ba776a1ea7400c950e72ab45c38e67 schema:issueNumber 1
112 rdf:type schema:PublicationIssue
113 Nb1786b3773fb446f9a5c6840694b6df9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Genetic Predisposition to Disease
115 rdf:type schema:DefinedTerm
116 Nb8bc47962f1a48649f2470dc0566fb76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Registries
118 rdf:type schema:DefinedTerm
119 Nb8d8c9a0a4584fc3800406eb69cb195f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Humans
121 rdf:type schema:DefinedTerm
122 Nc18e2a0d407b4caba13a286bfe86bb05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Female
124 rdf:type schema:DefinedTerm
125 Nc2729a06832645008f8ad1c29d55cb46 rdf:first sg:person.01073656341.15
126 rdf:rest N8e702c58e35046db9e403c32dd9dd482
127 Nca68f2e5445e4ab9b8d6a7e630c3d945 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name ROC Curve
129 rdf:type schema:DefinedTerm
130 Ncbf6508654de48f58162c43d5bc3c77b schema:volumeNumber 16
131 rdf:type schema:PublicationVolume
132 Nd5c9e8a8d7bb45e5b3a012d33cd7b2c6 rdf:first sg:person.0737416401.72
133 rdf:rest N95e7512304d7486992f30568a43a4dce
134 Nd6a2a722ddbe46f997e263fadb2041d4 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Ndb8e20294646475892035bfc3836ba0c rdf:first sg:person.015302742440.35
137 rdf:rest Nd5c9e8a8d7bb45e5b3a012d33cd7b2c6
138 Ndf0cf3ed3f524263aece4436959efe52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Risk
140 rdf:type schema:DefinedTerm
141 Ne3411ea75f874708a5c0fab8ddacbe90 schema:name dimensions_id
142 schema:value pub.1036712301
143 rdf:type schema:PropertyValue
144 Ne64021232ac34b2383fd238aca7b394d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Middle Aged
146 rdf:type schema:DefinedTerm
147 Nf5b6eda401484d27b507e7666f3e737c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Proportional Hazards Models
149 rdf:type schema:DefinedTerm
150 Nf9c5862107db4a19bf9bbd121cb42409 rdf:first sg:person.0714775365.02
151 rdf:rest Ndb8e20294646475892035bfc3836ba0c
152 Nfad48523398c4abaa51182aecabc904a schema:name readcube_id
153 schema:value aee25960e4ac4e423d4be8531f911b9041887d7ce94d6923142992ffabd8c34b
154 rdf:type schema:PropertyValue
155 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
156 schema:name Medical and Health Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
159 schema:name Oncology and Carcinogenesis
160 rdf:type schema:DefinedTerm
161 sg:journal.1024251 schema:issn 1471-2156
162 schema:name BMC Genetics
163 rdf:type schema:Periodical
164 sg:person.01073656341.15 schema:affiliation https://www.grid.ac/institutes/grid.411947.e
165 schema:familyName Won
166 schema:givenName Daeyoun
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073656341.15
168 rdf:type schema:Person
169 sg:person.01141771541.95 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
170 schema:familyName Jeon
171 schema:givenName Christina
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141771541.95
173 rdf:type schema:Person
174 sg:person.012346226777.92 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
175 schema:familyName Beaty
176 schema:givenName Terri H
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346226777.92
178 rdf:type schema:Person
179 sg:person.015302742440.35 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
180 schema:familyName Kim
181 schema:givenName Tae Il
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015302742440.35
183 rdf:type schema:Person
184 sg:person.0643036432.30 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
185 schema:familyName Jung
186 schema:givenName Keum Ji
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643036432.30
188 rdf:type schema:Person
189 sg:person.0714775365.02 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
190 schema:familyName Kim
191 schema:givenName Soriul
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714775365.02
193 rdf:type schema:Person
194 sg:person.0737416401.72 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
195 schema:familyName Jee
196 schema:givenName Sun Ha
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737416401.72
198 rdf:type schema:Person
199 sg:pub.10.1007/s10552-013-0204-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051143760
200 https://doi.org/10.1007/s10552-013-0204-2
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature08185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025133227
203 https://doi.org/10.1038/nature08185
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/ng.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002420498
206 https://doi.org/10.1038/ng.111
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/ng.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045441389
209 https://doi.org/10.1038/ng.133
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nrg1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029660577
212 https://doi.org/10.1038/nrg1916
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/pros.22661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006182299
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.canep.2012.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047127504
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.metabol.2014.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034785532
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0140-6736(10)61267-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022889335
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1056/nejm200007133430201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007171562
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/hmg/ddr523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024528737
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1136/gutjnl-2011-300537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015953404
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1161/strokeaha.113.002938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025060934
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1161/strokeaha.113.003044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026318867
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1167/iovs.08-3064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020825027
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1371/journal.pone.0023196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007480749
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1371/journal.pone.0088079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041369912
237 rdf:type schema:CreativeWork
238 https://doi.org/10.5808/gi.2012.10.3.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019513163
239 rdf:type schema:CreativeWork
240 https://doi.org/10.7326/0003-4819-150-8-200904210-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073710737
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
243 schema:name Department of Public Health, Graduate School, Yonsei University, Seoul, South Korea
244 Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
245 Institute for Health Promotion and Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, 50 Yonse-ro, Seodaemun-gu, Seoul, South Korea
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
248 schema:name Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.411947.e schema:alternateName Catholic University of Korea
251 schema:name The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, South Korea
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...