A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Wenpan Dong, Han Liu, Chao Xu, Yunjuan Zuo, Zhongjian Chen, Shiliang Zhou

ABSTRACT

BACKGROUND: Universal conventional DNA barcodes will become more and more popular in biological material identifications. However, in many cases such as processed medicines or canned food, the universal conventional barcodes are unnecessary and/or inapplicable due to DNA degradation. DNA mini-barcode is a solution for such specific purposes. Here we exemplify how to develop the best mini-barcodes for specific taxa using the ginseng genus (Panax) as an example. RESULTS: The chloroplast genome of P. notoginseng was sequenced. The genome was compared with that of P. ginseng. Regions of the highest variability were sought out. The shortest lengths which had the same discrimination powers of conventional lengths were considered the best mini-barcodes. The results showed that the chloroplast genome of P. notoginseng is 156,387 bp. There are only 464 (0.30%) substitutions between the two genomes. The intron of rps16 and two regions of the coding gene ycf1, ycf1a and ycf1b, evolved the quickest and served as candidate regions. The mini-barcodes of Panax turned out to be 60 bp for ycf1a at a discrimination power of 91.67%, 100 bp for ycf1b at 100%, and 280 bp for rps16 at 83.33%. CONCLUSIONS: The strategy by searching the whole chloroplast genomes, identifying the most variable regions, shortening the focal regions for mini-barcodes are believed to be efficient in developing taxon-specific DNA mini-barcodes. The best DNA mini-barcodes are guaranteed to be found following this strategy. More... »

PAGES

138

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12863-014-0138-z

DOI

http://dx.doi.org/10.1186/s12863-014-0138-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013030567

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25526752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Barcoding, Taxonomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Chloroplast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Panax", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Botany", 
          "id": "https://www.grid.ac/institutes/grid.435133.3", 
          "name": [
            "State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Wenpan", 
        "id": "sg:person.0724133030.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724133030.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Botany", 
          "id": "https://www.grid.ac/institutes/grid.435133.3", 
          "name": [
            "State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Han", 
        "id": "sg:person.01341451352.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341451352.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Botany", 
          "id": "https://www.grid.ac/institutes/grid.435133.3", 
          "name": [
            "State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Chao", 
        "id": "sg:person.0772246230.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772246230.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Shanghai Chenshan Plant Science Research Center, the Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, 201602, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuo", 
        "givenName": "Yunjuan", 
        "id": "sg:person.0664160452.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664160452.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Sanqi Research, Wenshan College, 663000, Wenshan, Yunnan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhongjian", 
        "id": "sg:person.01243407655.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243407655.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Botany", 
          "id": "https://www.grid.ac/institutes/grid.435133.3", 
          "name": [
            "State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Shiliang", 
        "id": "sg:person.01106474630.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106474630.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/dnares/11.4.247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002561707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005465350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-10-68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011375603", 
          "https://doi.org/10.1186/1471-2229-10-68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012894376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0035071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012980256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evt063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013028934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014052796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00606-008-0095-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015946878", 
          "https://doi.org/10.1007/s00606-008-0095-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00606-008-0095-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015946878", 
          "https://doi.org/10.1007/s00606-008-0095-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12705/633.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016195489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12705/633.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016195489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12705/633.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016195489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12705/633.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016195489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0077965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016934104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0077965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016934104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0077965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016934104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0021252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017067489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dsr002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020168777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2011.03076.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021245568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021484173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-9-131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022936437", 
          "https://doi.org/10.1186/1471-2229-9-131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2008.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023465636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024002740", 
          "https://doi.org/10.1186/1471-2164-9-214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026653096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026950049", 
          "https://doi.org/10.1038/srep03518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-8286.2006.01470.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032307454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.1100570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2011.03108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038385014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044721458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046410228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050086076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052386520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-12-73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053540142", 
          "https://doi.org/10.1186/1471-2148-12-73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0030-1250166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057215692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1259.2013.00072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071352071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1259.2013.00094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071352074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4238/2011.october.31.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072390728"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Universal conventional DNA barcodes will become more and more popular in biological material identifications. However, in many cases such as processed medicines or canned food, the universal conventional barcodes are unnecessary and/or inapplicable due to DNA degradation. DNA mini-barcode is a solution for such specific purposes. Here we exemplify how to develop the best mini-barcodes for specific taxa using the ginseng genus (Panax) as an example.\nRESULTS: The chloroplast genome of P. notoginseng was sequenced. The genome was compared with that of P. ginseng. Regions of the highest variability were sought out. The shortest lengths which had the same discrimination powers of conventional lengths were considered the best mini-barcodes. The results showed that the chloroplast genome of P. notoginseng is 156,387 bp. There are only 464 (0.30%) substitutions between the two genomes. The intron of rps16 and two regions of the coding gene ycf1, ycf1a and ycf1b, evolved the quickest and served as candidate regions. The mini-barcodes of Panax turned out to be 60 bp for ycf1a at a discrimination power of 91.67%, 100 bp for ycf1b at 100%, and 280 bp for rps16 at 83.33%.\nCONCLUSIONS: The strategy by searching the whole chloroplast genomes, identifying the most variable regions, shortening the focal regions for mini-barcodes are believed to be efficient in developing taxon-specific DNA mini-barcodes. The best DNA mini-barcodes are guaranteed to be found following this strategy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12863-014-0138-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4944198", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024251", 
        "issn": [
          "1471-2156"
        ], 
        "name": "BMC Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs", 
    "pagination": "138", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e13a41bfd6c0a13c89425de7a804020165f6cf844c7f84913874529af857a26"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25526752"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12863-014-0138-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013030567"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12863-014-0138-z", 
      "https://app.dimensions.ai/details/publication/pub.1013030567"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12863-014-0138-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12863-014-0138-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12863-014-0138-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12863-014-0138-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12863-014-0138-z'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      66 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12863-014-0138-z schema:about N4a3c44bd05b94cceb55acb45d2367982
2 N66ba758cec254c4488d0257c3706b22c
3 N6c0e5974e7064f5bbea6053cee1dc63b
4 N910c07c3293c4df2afe1e69c6fdd452e
5 Nac14a52138a24c2ca9ddc687a7ef94a5
6 Nd8b9a38b8d924b5ab094a47ae6a61d01
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N02428a92fe214ad6ad83a94d6aeba110
10 schema:citation sg:pub.10.1007/s00606-008-0095-y
11 sg:pub.10.1038/srep03518
12 sg:pub.10.1186/1471-2148-12-73
13 sg:pub.10.1186/1471-2164-9-214
14 sg:pub.10.1186/1471-2229-10-68
15 sg:pub.10.1186/1471-2229-9-131
16 https://doi.org/10.1016/j.ympev.2008.09.009
17 https://doi.org/10.1055/s-0030-1250166
18 https://doi.org/10.1093/bioinformatics/bth352
19 https://doi.org/10.1093/bioinformatics/btm598
20 https://doi.org/10.1093/bioinformatics/btp187
21 https://doi.org/10.1093/bioinformatics/btq224
22 https://doi.org/10.1093/dnares/11.4.247
23 https://doi.org/10.1093/dnares/dsr002
24 https://doi.org/10.1093/gbe/evt063
25 https://doi.org/10.1093/nar/gki366
26 https://doi.org/10.1111/1755-0998.12135
27 https://doi.org/10.1111/1755-0998.12185
28 https://doi.org/10.1111/1755-0998.12194
29 https://doi.org/10.1111/1755-0998.12198
30 https://doi.org/10.1111/j.1471-8286.2006.01470.x
31 https://doi.org/10.1111/j.1755-0998.2011.03076.x
32 https://doi.org/10.1111/j.1755-0998.2011.03108.x
33 https://doi.org/10.12705/633.9
34 https://doi.org/10.1371/journal.pone.0021252
35 https://doi.org/10.1371/journal.pone.0035071
36 https://doi.org/10.1371/journal.pone.0077965
37 https://doi.org/10.3724/sp.j.1259.2013.00072
38 https://doi.org/10.3724/sp.j.1259.2013.00094
39 https://doi.org/10.3732/ajb.1100570
40 https://doi.org/10.4238/2011.october.31.3
41 schema:datePublished 2014-12
42 schema:datePublishedReg 2014-12-01
43 schema:description BACKGROUND: Universal conventional DNA barcodes will become more and more popular in biological material identifications. However, in many cases such as processed medicines or canned food, the universal conventional barcodes are unnecessary and/or inapplicable due to DNA degradation. DNA mini-barcode is a solution for such specific purposes. Here we exemplify how to develop the best mini-barcodes for specific taxa using the ginseng genus (Panax) as an example. RESULTS: The chloroplast genome of P. notoginseng was sequenced. The genome was compared with that of P. ginseng. Regions of the highest variability were sought out. The shortest lengths which had the same discrimination powers of conventional lengths were considered the best mini-barcodes. The results showed that the chloroplast genome of P. notoginseng is 156,387 bp. There are only 464 (0.30%) substitutions between the two genomes. The intron of rps16 and two regions of the coding gene ycf1, ycf1a and ycf1b, evolved the quickest and served as candidate regions. The mini-barcodes of Panax turned out to be 60 bp for ycf1a at a discrimination power of 91.67%, 100 bp for ycf1b at 100%, and 280 bp for rps16 at 83.33%. CONCLUSIONS: The strategy by searching the whole chloroplast genomes, identifying the most variable regions, shortening the focal regions for mini-barcodes are believed to be efficient in developing taxon-specific DNA mini-barcodes. The best DNA mini-barcodes are guaranteed to be found following this strategy.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N68f6860a0d9c4fc586a5ef2a3c16a7c6
48 Nedb7778211644fc291074e98c4294249
49 sg:journal.1024251
50 schema:name A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs
51 schema:pagination 138
52 schema:productId N217af037cc534002b58bee5215e79d76
53 N6666fe962b45453992768b96a42532be
54 Nb7b6220d71cf41bbbde0257d40c3cde7
55 Nccb6dc01d0484ae4816ecfbfc164f7b4
56 Ne1c3d190740541a382946eed3dec637d
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013030567
58 https://doi.org/10.1186/s12863-014-0138-z
59 schema:sdDatePublished 2019-04-11T10:01
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N95070ca224624e5c91971e378d88185f
62 schema:url http://link.springer.com/10.1186%2Fs12863-014-0138-z
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N02428a92fe214ad6ad83a94d6aeba110 rdf:first sg:person.0724133030.19
67 rdf:rest N32cc80a7850b4a71bfb5bd72463c2c3b
68 N0a58789adfd74616ad58a03bf15c2d04 rdf:first sg:person.01243407655.05
69 rdf:rest Nafa683587304421abfd5b2ec5a34924d
70 N16f773d17ec94cbfb234dddc73a18277 schema:name Institute of Sanqi Research, Wenshan College, 663000, Wenshan, Yunnan, China
71 rdf:type schema:Organization
72 N217af037cc534002b58bee5215e79d76 schema:name readcube_id
73 schema:value 3e13a41bfd6c0a13c89425de7a804020165f6cf844c7f84913874529af857a26
74 rdf:type schema:PropertyValue
75 N29e819a5dfa44ba687729db62c79d5b9 rdf:first sg:person.0772246230.30
76 rdf:rest N3920d45a4a52484696cacd23f56c30ec
77 N32cc80a7850b4a71bfb5bd72463c2c3b rdf:first sg:person.01341451352.01
78 rdf:rest N29e819a5dfa44ba687729db62c79d5b9
79 N3920d45a4a52484696cacd23f56c30ec rdf:first sg:person.0664160452.83
80 rdf:rest N0a58789adfd74616ad58a03bf15c2d04
81 N4a3c44bd05b94cceb55acb45d2367982 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Sequence Analysis, DNA
83 rdf:type schema:DefinedTerm
84 N6666fe962b45453992768b96a42532be schema:name pubmed_id
85 schema:value 25526752
86 rdf:type schema:PropertyValue
87 N66ba758cec254c4488d0257c3706b22c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Genome, Chloroplast
89 rdf:type schema:DefinedTerm
90 N68f6860a0d9c4fc586a5ef2a3c16a7c6 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 N6c0e5974e7064f5bbea6053cee1dc63b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Genetic Markers
94 rdf:type schema:DefinedTerm
95 N910c07c3293c4df2afe1e69c6fdd452e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name DNA Barcoding, Taxonomic
97 rdf:type schema:DefinedTerm
98 N95070ca224624e5c91971e378d88185f schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nac14a52138a24c2ca9ddc687a7ef94a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Genes, Plant
102 rdf:type schema:DefinedTerm
103 Nafa683587304421abfd5b2ec5a34924d rdf:first sg:person.01106474630.14
104 rdf:rest rdf:nil
105 Nb7b6220d71cf41bbbde0257d40c3cde7 schema:name nlm_unique_id
106 schema:value 100966978
107 rdf:type schema:PropertyValue
108 Nccb6dc01d0484ae4816ecfbfc164f7b4 schema:name doi
109 schema:value 10.1186/s12863-014-0138-z
110 rdf:type schema:PropertyValue
111 Nd8b9a38b8d924b5ab094a47ae6a61d01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Panax
113 rdf:type schema:DefinedTerm
114 Ne1c3d190740541a382946eed3dec637d schema:name dimensions_id
115 schema:value pub.1013030567
116 rdf:type schema:PropertyValue
117 Nedb7778211644fc291074e98c4294249 schema:volumeNumber 15
118 rdf:type schema:PublicationVolume
119 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
120 schema:name Biological Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
123 schema:name Genetics
124 rdf:type schema:DefinedTerm
125 sg:grant.4944198 http://pending.schema.org/fundedItem sg:pub.10.1186/s12863-014-0138-z
126 rdf:type schema:MonetaryGrant
127 sg:journal.1024251 schema:issn 1471-2156
128 schema:name BMC Genetics
129 rdf:type schema:Periodical
130 sg:person.01106474630.14 schema:affiliation https://www.grid.ac/institutes/grid.435133.3
131 schema:familyName Zhou
132 schema:givenName Shiliang
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106474630.14
134 rdf:type schema:Person
135 sg:person.01243407655.05 schema:affiliation N16f773d17ec94cbfb234dddc73a18277
136 schema:familyName Chen
137 schema:givenName Zhongjian
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243407655.05
139 rdf:type schema:Person
140 sg:person.01341451352.01 schema:affiliation https://www.grid.ac/institutes/grid.435133.3
141 schema:familyName Liu
142 schema:givenName Han
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341451352.01
144 rdf:type schema:Person
145 sg:person.0664160452.83 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
146 schema:familyName Zuo
147 schema:givenName Yunjuan
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664160452.83
149 rdf:type schema:Person
150 sg:person.0724133030.19 schema:affiliation https://www.grid.ac/institutes/grid.435133.3
151 schema:familyName Dong
152 schema:givenName Wenpan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724133030.19
154 rdf:type schema:Person
155 sg:person.0772246230.30 schema:affiliation https://www.grid.ac/institutes/grid.435133.3
156 schema:familyName Xu
157 schema:givenName Chao
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772246230.30
159 rdf:type schema:Person
160 sg:pub.10.1007/s00606-008-0095-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015946878
161 https://doi.org/10.1007/s00606-008-0095-y
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/srep03518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026950049
164 https://doi.org/10.1038/srep03518
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2148-12-73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053540142
167 https://doi.org/10.1186/1471-2148-12-73
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2164-9-214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024002740
170 https://doi.org/10.1186/1471-2164-9-214
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2229-10-68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011375603
173 https://doi.org/10.1186/1471-2229-10-68
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2229-9-131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022936437
176 https://doi.org/10.1186/1471-2229-9-131
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ympev.2008.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023465636
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1055/s-0030-1250166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057215692
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/bth352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050086076
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/bioinformatics/btm598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052386520
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/bioinformatics/btp187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484173
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/bioinformatics/btq224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005465350
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/dnares/11.4.247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002561707
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/dnares/dsr002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020168777
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/gbe/evt063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013028934
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/nar/gki366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046410228
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/1755-0998.12135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026653096
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/1755-0998.12185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014052796
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/1755-0998.12194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044721458
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/1755-0998.12198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012894376
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1471-8286.2006.01470.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032307454
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/j.1755-0998.2011.03076.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021245568
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1755-0998.2011.03108.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038385014
211 rdf:type schema:CreativeWork
212 https://doi.org/10.12705/633.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016195489
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1371/journal.pone.0021252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017067489
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pone.0035071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012980256
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pone.0077965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016934104
219 rdf:type schema:CreativeWork
220 https://doi.org/10.3724/sp.j.1259.2013.00072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071352071
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3724/sp.j.1259.2013.00094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071352074
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3732/ajb.1100570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034165325
225 rdf:type schema:CreativeWork
226 https://doi.org/10.4238/2011.october.31.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072390728
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.435133.3 schema:alternateName Institute of Botany
229 schema:name State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
232 schema:name Shanghai Chenshan Plant Science Research Center, the Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, 201602, Shanghai, China
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...