The evolution of vitamin C biosynthesis and transport in animals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-25

AUTHORS

Pedro Duque, Cristina P. Vieira, Bárbara Bastos, Jorge Vieira

ABSTRACT

BackgroundVitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by l-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals.ResultsBoth GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene.ConclusionsThe simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups. More... »

PAGES

84

References to SciGraph publications

  • 2006-12-01. How complete are current yeast and human protein-interaction networks? in GENOME BIOLOGY
  • 2010-03-25. I-TASSER: a unified platform for automated protein structure and function prediction in NATURE PROTOCOLS
  • 2014-12-30. The I-TASSER Suite: protein structure and function prediction in NATURE METHODS
  • 1994-08. Primitive actimoterigian fishes can synthesize ascorbic acid in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2003-07-04. Sodium-dependent ascorbic acid transporter family SLC23 in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 1999-05-06. A family of mammalian Na+-dependent L-ascorbic acid transporters in NATURE
  • 2018-01-30. Large Scale Analyses and Visualization of Adaptive Amino Acid Changes Projects in INTERDISCIPLINARY SCIENCES: COMPUTATIONAL LIFE SCIENCES
  • 2009-08-08. A mouse protein interactome through combined literature mining with multiple sources of interaction evidence in AMINO ACIDS
  • 2018-04-25. A screen of Crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells in MUCOSAL IMMUNOLOGY
  • 2018-08-17. A Bioinformatics Protocol for Quickly Creating Large-Scale Phylogenetic Trees in PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 12TH INTERNATIONAL CONFERENCE
  • 2014-03-16. Diversity and dynamics of the Drosophila transcriptome in NATURE
  • 2009-08-04. The evolutionary significance of ancient genome duplications in NATURE REVIEWS GENETICS
  • 2014-08-05. Whole-genome duplication in teleost fishes and its evolutionary consequences in MOLECULAR GENETICS AND GENOMICS
  • 2007-06-01. SVCT1 and SVCT2: key proteins for vitamin C uptake in AMINO ACIDS
  • 2013-05-14. The anti-apoptotic effect of regucalcin is mediated through multisignaling pathways in APOPTOSIS
  • 2011-04-20. Enterotypes of the human gut microbiome in NATURE
  • 2011-03-01. Lipid Peroxidation and Its Toxicological Implications in TOXICOLOGICAL RESEARCH
  • 2019-06-18. Multiple independent L-gulonolactone oxidase (GULO) gene losses and vitamin C synthesis reacquisition events in non-Deuterostomian animal species in BMC ECOLOGY AND EVOLUTION
  • 2019-02-01. EvoPPI 1.0: a Web Platform for Within- and Between-Species Multiple Interactome Comparisons and Application to Nine PolyQ Proteins Determining Neurodegenerative Diseases in INTERDISCIPLINARY SCIENCES: COMPUTATIONAL LIFE SCIENCES
  • 2013-06-05. Vitamin C transporter gene (SLC23A1 and SLC23A2) polymorphisms, plasma vitamin C levels, and gastric cancer risk in the EPIC cohort in GENES & NUTRITION
  • 2013-10-23. The role of ascorbate in protein folding in PROTOPLASMA
  • 2016-10-19. Genome evolution in the allotetraploid frog Xenopus laevis in NATURE
  • 2011-08-31. An integrative approach to ortholog prediction for disease-focused and other functional studies in BMC BIOINFORMATICS
  • 2019-10-26. ATXN1 N-terminal region explains the binding differences of wild-type and expanded forms in BMC MEDICAL GENOMICS
  • 2017-06-21. Automated Collection and Sharing of Adaptive Amino Acid Changes Data in 11TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12862-022-02040-7

    DOI

    http://dx.doi.org/10.1186/s12862-022-02040-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148973552

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35752765


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antioxidants", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ascorbic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "L-Gulonolactone Oxidase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mammals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidative Stress", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vertebrates", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.5808.5", 
              "name": [
                "Instituto de Ci\u00eancias Biom\u00e9dicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal", 
                "Faculdade de Ci\u00eancias da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal", 
                "Instituto de Investiga\u00e7\u00e3o e Inova\u00e7\u00e3o em Sa\u00fade (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal", 
                "Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duque", 
            "givenName": "Pedro", 
            "id": "sg:person.07640567610.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07640567610.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.5808.5", 
              "name": [
                "Instituto de Investiga\u00e7\u00e3o e Inova\u00e7\u00e3o em Sa\u00fade (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal", 
                "Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vieira", 
            "givenName": "Cristina P.", 
            "id": "sg:person.01146115461.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146115461.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.5808.5", 
              "name": [
                "Instituto de Investiga\u00e7\u00e3o e Inova\u00e7\u00e3o em Sa\u00fade (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal", 
                "Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bastos", 
            "givenName": "B\u00e1rbara", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.5808.5", 
              "name": [
                "Instituto de Investiga\u00e7\u00e3o e Inova\u00e7\u00e3o em Sa\u00fade (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal", 
                "Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vieira", 
            "givenName": "Jorge", 
            "id": "sg:person.0715440461.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715440461.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41385-018-0022-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103624759", 
              "https://doi.org/10.1038/s41385-018-0022-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12263-013-0346-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050049019", 
              "https://doi.org/10.1007/s12263-013-0346-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006999469", 
              "https://doi.org/10.1038/nprot.2010.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2006-7-11-120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015165657", 
              "https://doi.org/10.1186/gb-2006-7-11-120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.5487/tr.2011.27.1.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050575148", 
              "https://doi.org/10.5487/tr.2011.27.1.001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-014-0889-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005736846", 
              "https://doi.org/10.1007/s00438-014-0889-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026204536", 
              "https://doi.org/10.1038/nature09944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01919376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036754887", 
              "https://doi.org/10.1007/bf01919376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00726-007-0555-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020988284", 
              "https://doi.org/10.1007/s00726-007-0555-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12920-019-0594-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122117669", 
              "https://doi.org/10.1186/s12920-019-0594-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-60816-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086076429", 
              "https://doi.org/10.1007/978-3-319-60816-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12539-019-00317-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111835285", 
              "https://doi.org/10.1007/s12539-019-00317-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/19986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026500684", 
              "https://doi.org/10.1038/19986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044643224", 
              "https://doi.org/10.1038/nature12962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-98702-6_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106184883", 
              "https://doi.org/10.1007/978-3-319-98702-6_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00424-003-1104-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003304034", 
              "https://doi.org/10.1007/s00424-003-1104-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12862-019-1454-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117291714", 
              "https://doi.org/10.1186/s12862-019-1454-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026949821", 
              "https://doi.org/10.1038/nmeth.3213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00709-013-0560-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029971185", 
              "https://doi.org/10.1007/s00709-013-0560-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12539-018-0282-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100711658", 
              "https://doi.org/10.1007/s12539-018-0282-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00726-009-0335-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013580805", 
              "https://doi.org/10.1007/s00726-009-0335-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048171554", 
              "https://doi.org/10.1186/1471-2105-12-357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021511241", 
              "https://doi.org/10.1038/nature19840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10495-013-0859-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031813614", 
              "https://doi.org/10.1007/s10495-013-0859-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033086863", 
              "https://doi.org/10.1038/nrg2600"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-25", 
        "datePublishedReg": "2022-06-25", 
        "description": "BackgroundVitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by l-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals.ResultsBoth GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene.ConclusionsThe simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12862-022-02040-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9759790", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9602019", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024249", 
            "issn": [
              "2730-7182"
            ], 
            "name": "BMC Ecology and Evolution", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "essential genes", 
          "GULO gene", 
          "gulonolactone oxidase", 
          "hexamerin storage proteins", 
          "animal taxonomic groups", 
          "non-vertebrate animals", 
          "synthesis pathway", 
          "different selective pressures", 
          "VC synthesis", 
          "vitamin C biosynthesis", 
          "multiple functions", 
          "oxidative stress response", 
          "subfunctionalization events", 
          "deuterostome species", 
          "eukaryotic cells", 
          "taxonomic groups", 
          "regucalcin gene", 
          "C biosynthesis", 
          "storage proteins", 
          "selective pressure", 
          "only gene", 
          "penultimate step", 
          "stress response", 
          "genes", 
          "lineages", 
          "protostomes", 
          "regucalcin", 
          "nucleobase transport", 
          "receptor-mediated uptake", 
          "species", 
          "calcium homeostasis", 
          "SVCT1", 
          "pathway", 
          "deuterostomes", 
          "optimal function", 
          "subphylum", 
          "last step", 
          "vertebrates", 
          "insects", 
          "Insecta", 
          "Nematoda", 
          "animals", 
          "mammals", 
          "biosynthesis", 
          "organisms", 
          "protein", 
          "homeostasis", 
          "uptake", 
          "evolution", 
          "first time", 
          "function", 
          "oxidase", 
          "cells", 
          "transport", 
          "gut", 
          "simultaneous study", 
          "family", 
          "members", 
          "synthesis", 
          "specificity", 
          "clear picture", 
          "antioxidants", 
          "step", 
          "novel synthesis pathway", 
          "response", 
          "diet", 
          "events", 
          "development", 
          "acquisition", 
          "study", 
          "results", 
          "base", 
          "group", 
          "time", 
          "picture", 
          "VC", 
          "pressure"
        ], 
        "name": "The evolution of vitamin C biosynthesis and transport in animals", 
        "pagination": "84", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148973552"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12862-022-02040-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35752765"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12862-022-02040-7", 
          "https://app.dimensions.ai/details/publication/pub.1148973552"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_947.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12862-022-02040-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-022-02040-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-022-02040-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-022-02040-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-022-02040-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    292 TRIPLES      21 PREDICATES      134 URIs      101 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12862-022-02040-7 schema:about N014e69430b4544abbc643c5e3da81e76
    2 N37284dcdecc3458eae9d41ac6d8d4bd1
    3 N416b97f8ffb247f6b5419b662f8cd7fa
    4 N739fc55fa0974fcf953fc54478ce92ad
    5 N74ff91fca4e34a26b18f600195370b97
    6 N8d9b470b7b1245519fcdc5aee1b1cbd9
    7 Ncf9cad3a5240443ab2675a64f54c5f5c
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 schema:author N8d04c04b763f4ca4a061785532672f7e
    11 schema:citation sg:pub.10.1007/978-3-319-60816-7_3
    12 sg:pub.10.1007/978-3-319-98702-6_11
    13 sg:pub.10.1007/bf01919376
    14 sg:pub.10.1007/s00424-003-1104-1
    15 sg:pub.10.1007/s00438-014-0889-2
    16 sg:pub.10.1007/s00709-013-0560-5
    17 sg:pub.10.1007/s00726-007-0555-7
    18 sg:pub.10.1007/s00726-009-0335-7
    19 sg:pub.10.1007/s10495-013-0859-x
    20 sg:pub.10.1007/s12263-013-0346-6
    21 sg:pub.10.1007/s12539-018-0282-7
    22 sg:pub.10.1007/s12539-019-00317-y
    23 sg:pub.10.1038/19986
    24 sg:pub.10.1038/nature09944
    25 sg:pub.10.1038/nature12962
    26 sg:pub.10.1038/nature19840
    27 sg:pub.10.1038/nmeth.3213
    28 sg:pub.10.1038/nprot.2010.5
    29 sg:pub.10.1038/nrg2600
    30 sg:pub.10.1038/s41385-018-0022-7
    31 sg:pub.10.1186/1471-2105-12-357
    32 sg:pub.10.1186/gb-2006-7-11-120
    33 sg:pub.10.1186/s12862-019-1454-8
    34 sg:pub.10.1186/s12920-019-0594-4
    35 sg:pub.10.5487/tr.2011.27.1.001
    36 schema:datePublished 2022-06-25
    37 schema:datePublishedReg 2022-06-25
    38 schema:description BackgroundVitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by l-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals.ResultsBoth GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene.ConclusionsThe simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups.
    39 schema:genre article
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N5a9081153d4f425f99a8109f128daedc
    42 N73e84761312244c0911b2f2e2cdcc652
    43 sg:journal.1024249
    44 schema:keywords C biosynthesis
    45 GULO gene
    46 Insecta
    47 Nematoda
    48 SVCT1
    49 VC
    50 VC synthesis
    51 acquisition
    52 animal taxonomic groups
    53 animals
    54 antioxidants
    55 base
    56 biosynthesis
    57 calcium homeostasis
    58 cells
    59 clear picture
    60 deuterostome species
    61 deuterostomes
    62 development
    63 diet
    64 different selective pressures
    65 essential genes
    66 eukaryotic cells
    67 events
    68 evolution
    69 family
    70 first time
    71 function
    72 genes
    73 group
    74 gulonolactone oxidase
    75 gut
    76 hexamerin storage proteins
    77 homeostasis
    78 insects
    79 last step
    80 lineages
    81 mammals
    82 members
    83 multiple functions
    84 non-vertebrate animals
    85 novel synthesis pathway
    86 nucleobase transport
    87 only gene
    88 optimal function
    89 organisms
    90 oxidase
    91 oxidative stress response
    92 pathway
    93 penultimate step
    94 picture
    95 pressure
    96 protein
    97 protostomes
    98 receptor-mediated uptake
    99 regucalcin
    100 regucalcin gene
    101 response
    102 results
    103 selective pressure
    104 simultaneous study
    105 species
    106 specificity
    107 step
    108 storage proteins
    109 stress response
    110 study
    111 subfunctionalization events
    112 subphylum
    113 synthesis
    114 synthesis pathway
    115 taxonomic groups
    116 time
    117 transport
    118 uptake
    119 vertebrates
    120 vitamin C biosynthesis
    121 schema:name The evolution of vitamin C biosynthesis and transport in animals
    122 schema:pagination 84
    123 schema:productId N9d8336b6b76146839b2fc7241ad0a9d0
    124 Nd6c7f1fef5d342f59f9d3e8ee20ee1aa
    125 Ndc725b7429784a6387b839bf95a058b4
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148973552
    127 https://doi.org/10.1186/s12862-022-02040-7
    128 schema:sdDatePublished 2022-09-02T16:07
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher Na4fd38d97b5f4773ab9a33cd690189e4
    131 schema:url https://doi.org/10.1186/s12862-022-02040-7
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N014e69430b4544abbc643c5e3da81e76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Ascorbic Acid
    137 rdf:type schema:DefinedTerm
    138 N37284dcdecc3458eae9d41ac6d8d4bd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Animals
    140 rdf:type schema:DefinedTerm
    141 N416b97f8ffb247f6b5419b662f8cd7fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Vertebrates
    143 rdf:type schema:DefinedTerm
    144 N5a9081153d4f425f99a8109f128daedc schema:issueNumber 1
    145 rdf:type schema:PublicationIssue
    146 N739fc55fa0974fcf953fc54478ce92ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Mammals
    148 rdf:type schema:DefinedTerm
    149 N73e84761312244c0911b2f2e2cdcc652 schema:volumeNumber 22
    150 rdf:type schema:PublicationVolume
    151 N74ff91fca4e34a26b18f600195370b97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Antioxidants
    153 rdf:type schema:DefinedTerm
    154 N778aae990e9b4eda81df73149b5c8bcf schema:affiliation grid-institutes:grid.5808.5
    155 schema:familyName Bastos
    156 schema:givenName Bárbara
    157 rdf:type schema:Person
    158 N8d04c04b763f4ca4a061785532672f7e rdf:first sg:person.07640567610.93
    159 rdf:rest Nb247ce9622354cdab1009e2269816461
    160 N8d9b470b7b1245519fcdc5aee1b1cbd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Oxidative Stress
    162 rdf:type schema:DefinedTerm
    163 N9d8336b6b76146839b2fc7241ad0a9d0 schema:name dimensions_id
    164 schema:value pub.1148973552
    165 rdf:type schema:PropertyValue
    166 Na4fd38d97b5f4773ab9a33cd690189e4 schema:name Springer Nature - SN SciGraph project
    167 rdf:type schema:Organization
    168 Naf38a49d215d4b90bebd633a6168a538 rdf:first N778aae990e9b4eda81df73149b5c8bcf
    169 rdf:rest Nffe6e70a6917453bb255441e6151afd7
    170 Nb247ce9622354cdab1009e2269816461 rdf:first sg:person.01146115461.47
    171 rdf:rest Naf38a49d215d4b90bebd633a6168a538
    172 Ncf9cad3a5240443ab2675a64f54c5f5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name L-Gulonolactone Oxidase
    174 rdf:type schema:DefinedTerm
    175 Nd6c7f1fef5d342f59f9d3e8ee20ee1aa schema:name doi
    176 schema:value 10.1186/s12862-022-02040-7
    177 rdf:type schema:PropertyValue
    178 Ndc725b7429784a6387b839bf95a058b4 schema:name pubmed_id
    179 schema:value 35752765
    180 rdf:type schema:PropertyValue
    181 Nffe6e70a6917453bb255441e6151afd7 rdf:first sg:person.0715440461.06
    182 rdf:rest rdf:nil
    183 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Biological Sciences
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Genetics
    188 rdf:type schema:DefinedTerm
    189 sg:grant.9602019 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-022-02040-7
    190 rdf:type schema:MonetaryGrant
    191 sg:grant.9759790 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-022-02040-7
    192 rdf:type schema:MonetaryGrant
    193 sg:journal.1024249 schema:issn 2730-7182
    194 schema:name BMC Ecology and Evolution
    195 schema:publisher Springer Nature
    196 rdf:type schema:Periodical
    197 sg:person.01146115461.47 schema:affiliation grid-institutes:grid.5808.5
    198 schema:familyName Vieira
    199 schema:givenName Cristina P.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146115461.47
    201 rdf:type schema:Person
    202 sg:person.0715440461.06 schema:affiliation grid-institutes:grid.5808.5
    203 schema:familyName Vieira
    204 schema:givenName Jorge
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715440461.06
    206 rdf:type schema:Person
    207 sg:person.07640567610.93 schema:affiliation grid-institutes:grid.5808.5
    208 schema:familyName Duque
    209 schema:givenName Pedro
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07640567610.93
    211 rdf:type schema:Person
    212 sg:pub.10.1007/978-3-319-60816-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086076429
    213 https://doi.org/10.1007/978-3-319-60816-7_3
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/978-3-319-98702-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106184883
    216 https://doi.org/10.1007/978-3-319-98702-6_11
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf01919376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036754887
    219 https://doi.org/10.1007/bf01919376
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s00424-003-1104-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003304034
    222 https://doi.org/10.1007/s00424-003-1104-1
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s00438-014-0889-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005736846
    225 https://doi.org/10.1007/s00438-014-0889-2
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s00709-013-0560-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029971185
    228 https://doi.org/10.1007/s00709-013-0560-5
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00726-007-0555-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020988284
    231 https://doi.org/10.1007/s00726-007-0555-7
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00726-009-0335-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013580805
    234 https://doi.org/10.1007/s00726-009-0335-7
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s10495-013-0859-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031813614
    237 https://doi.org/10.1007/s10495-013-0859-x
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s12263-013-0346-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050049019
    240 https://doi.org/10.1007/s12263-013-0346-6
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s12539-018-0282-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100711658
    243 https://doi.org/10.1007/s12539-018-0282-7
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s12539-019-00317-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1111835285
    246 https://doi.org/10.1007/s12539-019-00317-y
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/19986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026500684
    249 https://doi.org/10.1038/19986
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nature09944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026204536
    252 https://doi.org/10.1038/nature09944
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nature12962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044643224
    255 https://doi.org/10.1038/nature12962
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature19840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021511241
    258 https://doi.org/10.1038/nature19840
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nmeth.3213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026949821
    261 https://doi.org/10.1038/nmeth.3213
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nprot.2010.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999469
    264 https://doi.org/10.1038/nprot.2010.5
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nrg2600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033086863
    267 https://doi.org/10.1038/nrg2600
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/s41385-018-0022-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103624759
    270 https://doi.org/10.1038/s41385-018-0022-7
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1186/1471-2105-12-357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048171554
    273 https://doi.org/10.1186/1471-2105-12-357
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1186/gb-2006-7-11-120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015165657
    276 https://doi.org/10.1186/gb-2006-7-11-120
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/s12862-019-1454-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117291714
    279 https://doi.org/10.1186/s12862-019-1454-8
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1186/s12920-019-0594-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122117669
    282 https://doi.org/10.1186/s12920-019-0594-4
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.5487/tr.2011.27.1.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050575148
    285 https://doi.org/10.5487/tr.2011.27.1.001
    286 rdf:type schema:CreativeWork
    287 grid-institutes:grid.5808.5 schema:alternateName Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
    288 schema:name Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
    289 Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
    290 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
    291 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
    292 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...