Singleton molecular species delimitation based on COI-5P barcode sequences revealed high cryptic/undescribed diversity for Chinese katydids (Orthoptera: Tettigoniidae) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Zhijun Zhou, Huifang Guo, Li Han, Jinyan Chai, Xuting Che, Fuming Shi

ABSTRACT

BACKGROUND: DNA barcoding has been developed as a useful tool for species discrimination. Several sequence-based species delimitation methods, such as Barcode Index Number (BIN), REfined Single Linkage (RESL), Automatic Barcode Gap Discovery (ABGD), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP), were used. Our aim was to estimate Chinese katydid biodiversity using standard DNA barcode cytochrome c oxidase subunit I (COI-5P) sequences. RESULTS: Detection of a barcoding gap by similarity-based analyses and clustering-base analyses indicated that 131 identified morphological species (morphospecies) were assigned to 196 BINs and were divided into four categories: (i) MATCH (83/131 = 64.89%), morphospecies were a perfect match between morphospecies and BINs (including 61 concordant BINs and 22 singleton BINs); (ii) MERGE (14/131 = 10.69%), morphospecies shared its unique BIN with other species; (iii) SPLIT (33/131 = 25.19%, when 22 singleton species were excluded, it rose to 33/109 = 30.28%), morphospecies were placed in more than one BIN; (iv) MIXTURE (4/131 = 5.34%), morphospecies showed a more complex partition involving both a merge and a split. Neighbor-joining (NJ) analyses showed that nearly all BINs and most morphospecies formed monophyletic cluster with little variation. The molecular operational taxonomic units (MOTUs) were defined considering only the more inclusive clades found by at least four of seven species delimitation methods. Our results robustly supported 61 of 109 (55.96%) morphospecies represented by more than one specimen, 159 of 213 (74.65%) concordant BINs, and 3 of 8 (37.5%) discordant BINs. CONCLUSIONS: Molecular species delimitation analyses generated a larger number of MOTUs compared with morphospecies. If these MOTU splits are proven to be true, Chinese katydids probably contain a seemingly large proportion of cryptic/undescribed taxa. Future amplification of additional molecular markers, particularly from the nuclear DNA, may be especially useful for specimens that were identified here as problematic taxa. More... »

PAGES

79

Journal

TITLE

BMC Evolutionary Biology

ISSUE

1

VOLUME

19

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12862-019-1404-5

DOI

http://dx.doi.org/10.1186/s12862-019-1404-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112768759

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30871464


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, 071002, Baoding, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zhijun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, 071002, Baoding, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Huifang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, 071002, Baoding, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, 071002, Baoding, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chai", 
        "givenName": "Jinyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, 071002, Baoding, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Che", 
        "givenName": "Xuting", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, 071002, Baoding, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Fuming", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0026207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001895839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002154825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2006.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002696803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00265-011-1174-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004058025", 
          "https://doi.org/10.1007/s00265-011-1174-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12862-015-0460-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004268123", 
          "https://doi.org/10.1186/s12862-015-0460-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150701701083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005731275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006369464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/zoj.12039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007126625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007540814", 
          "https://doi.org/10.1038/nmeth.2109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2011.05239.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009521460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0155541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009997118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0155541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009997118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3897/zookeys.582.6301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010084159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2012.05559.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010781588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/syp039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010973782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msw054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012564990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mss075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013930907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2009.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015474663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0082400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016371006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017655147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6785-12-24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019016556", 
          "https://doi.org/10.1186/1472-6785-12-24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-10-121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019150723", 
          "https://doi.org/10.1186/1471-2148-10-121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2016.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019761398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0066213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021982664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0803076105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022640167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01731581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023239976", 
          "https://doi.org/10.1007/bf01731581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01731581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023239976", 
          "https://doi.org/10.1007/bf01731581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01731581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023239976", 
          "https://doi.org/10.1007/bf01731581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/is12019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024721315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.12413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028018442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029272059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029272059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029343733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029343733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0084518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029382485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-8286.2007.01678.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031314971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2016.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031736407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mst064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032445904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13353-013-0180-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033089722", 
          "https://doi.org/10.1007/s13353-013-0180-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033668912", 
          "https://doi.org/10.1186/1471-2105-11-206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033668912", 
          "https://doi.org/10.1186/1471-2105-11-206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/sys037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036405191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jeb.12900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037658028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038864156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038864156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038864156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040413794", 
          "https://doi.org/10.1186/1471-2105-5-113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040465639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3897/zookeys.63.565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040893347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041584746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150600852011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041732393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/2041-210x.12107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043453182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3897/zookeys.596.8669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044913401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ecolsys.34.011802.132421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047333044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2009.02823.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048562945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2009.02823.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048562945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0019259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048597810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/syp027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048715625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsbl.2003.0025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048884524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/sys029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049138722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050990547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051607942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1116812108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051705537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.00624-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052320994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053632808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/syw002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060048694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11646/zootaxa.4120.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063380963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11646/zootaxa.4137.4.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063381338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/annotation/1c419628-f1b5-45de-9f8a-43f834309ebb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065266851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/annotation/8c15cfdf-7bfe-4da1-a8c8-76d5d465f7b2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065268428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2288118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069862461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074544756", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082548824", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083548492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083548492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2017.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083743950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/zoolinnean/zlw019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084602982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14772000.2017.1313792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085369722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3897/zookeys.679.12507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086016741"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: DNA barcoding has been developed as a useful tool for species discrimination. Several sequence-based species delimitation methods, such as Barcode Index Number (BIN), REfined Single Linkage (RESL), Automatic Barcode Gap Discovery (ABGD), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP), were used. Our aim was to estimate Chinese katydid biodiversity using standard DNA barcode cytochrome c oxidase subunit I (COI-5P) sequences.\nRESULTS: Detection of a barcoding gap by similarity-based analyses and clustering-base analyses indicated that 131 identified morphological species (morphospecies) were assigned to 196 BINs and were divided into four categories: (i) MATCH (83/131\u2009=\u200964.89%), morphospecies were a perfect match between morphospecies and BINs (including 61 concordant BINs and 22 singleton BINs); (ii) MERGE (14/131\u2009=\u200910.69%), morphospecies shared its unique BIN with other species; (iii) SPLIT (33/131\u2009=\u200925.19%, when 22 singleton species were excluded, it rose to 33/109\u2009=\u200930.28%), morphospecies were placed in more than one BIN; (iv) MIXTURE (4/131\u2009=\u20095.34%), morphospecies showed a more complex partition involving both a merge and a split. Neighbor-joining (NJ) analyses showed that nearly all BINs and most morphospecies formed monophyletic cluster with little variation. The molecular operational taxonomic units (MOTUs) were defined considering only the more inclusive clades found by at least four of seven species delimitation methods. Our results robustly supported 61 of 109 (55.96%) morphospecies represented by more than one specimen, 159 of 213 (74.65%) concordant BINs, and 3 of 8 (37.5%) discordant BINs.\nCONCLUSIONS: Molecular species delimitation analyses generated a larger number of MOTUs compared with morphospecies. If these MOTU splits are proven to be true, Chinese katydids probably contain a seemingly large proportion of cryptic/undescribed taxa. Future amplification of additional molecular markers, particularly from the nuclear DNA, may be especially useful for specimens that were identified here as problematic taxa.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12862-019-1404-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Singleton molecular species delimitation based on COI-5P barcode sequences revealed high cryptic/undescribed diversity for Chinese katydids (Orthoptera: Tettigoniidae)", 
    "pagination": "79", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f4d45b4febc712f88cb52eb1c24d67dd89d619fea0baba892b0e0f9417595adc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30871464"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12862-019-1404-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112768759"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12862-019-1404-5", 
      "https://app.dimensions.ai/details/publication/pub.1112768759"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78956_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12862-019-1404-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1404-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1404-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1404-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1404-5'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      98 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12862-019-1404-5 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N77538d3d5eda4134b6cf55ee3da914e8
4 schema:citation sg:pub.10.1007/bf01731581
5 sg:pub.10.1007/s00265-011-1174-6
6 sg:pub.10.1007/s13353-013-0180-y
7 sg:pub.10.1038/nmeth.2109
8 sg:pub.10.1186/1471-2105-11-206
9 sg:pub.10.1186/1471-2105-5-113
10 sg:pub.10.1186/1471-2148-10-121
11 sg:pub.10.1186/1472-6785-12-24
12 sg:pub.10.1186/s12862-015-0460-8
13 https://app.dimensions.ai/details/publication/pub.1074544756
14 https://app.dimensions.ai/details/publication/pub.1082548824
15 https://doi.org/10.1016/j.tree.2006.11.004
16 https://doi.org/10.1016/j.ympev.2009.06.012
17 https://doi.org/10.1016/j.ympev.2016.05.003
18 https://doi.org/10.1016/j.ympev.2016.08.023
19 https://doi.org/10.1016/j.ympev.2017.01.014
20 https://doi.org/10.1071/is12019
21 https://doi.org/10.1073/pnas.0803076105
22 https://doi.org/10.1073/pnas.1116812108
23 https://doi.org/10.1080/10635150600852011
24 https://doi.org/10.1080/10635150701701083
25 https://doi.org/10.1080/14772000.2017.1313792
26 https://doi.org/10.1093/bioinformatics/btg412
27 https://doi.org/10.1093/bioinformatics/btt499
28 https://doi.org/10.1093/molbev/mss075
29 https://doi.org/10.1093/molbev/mst064
30 https://doi.org/10.1093/molbev/msw054
31 https://doi.org/10.1093/sysbio/syp027
32 https://doi.org/10.1093/sysbio/syp039
33 https://doi.org/10.1093/sysbio/sys029
34 https://doi.org/10.1093/sysbio/sys037
35 https://doi.org/10.1093/sysbio/syw002
36 https://doi.org/10.1093/zoolinnean/zlw019
37 https://doi.org/10.1098/rsbl.2003.0025
38 https://doi.org/10.1111/1755-0998.12038
39 https://doi.org/10.1111/1755-0998.12150
40 https://doi.org/10.1111/1755-0998.12174
41 https://doi.org/10.1111/1755-0998.12441
42 https://doi.org/10.1111/1755-0998.12444
43 https://doi.org/10.1111/1755-0998.12638
44 https://doi.org/10.1111/1755-0998.12658
45 https://doi.org/10.1111/2041-210x.12107
46 https://doi.org/10.1111/j.1365-294x.2011.05239.x
47 https://doi.org/10.1111/j.1365-294x.2012.05559.x
48 https://doi.org/10.1111/j.1471-8286.2007.01678.x
49 https://doi.org/10.1111/j.1755-0998.2009.02823.x
50 https://doi.org/10.1111/jeb.12900
51 https://doi.org/10.1111/mec.12413
52 https://doi.org/10.1111/zoj.12039
53 https://doi.org/10.1128/jcm.00624-11
54 https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
55 https://doi.org/10.11646/zootaxa.4120.1.1
56 https://doi.org/10.11646/zootaxa.4137.4.5
57 https://doi.org/10.1371/annotation/1c419628-f1b5-45de-9f8a-43f834309ebb
58 https://doi.org/10.1371/annotation/8c15cfdf-7bfe-4da1-a8c8-76d5d465f7b2
59 https://doi.org/10.1371/journal.pone.0019259
60 https://doi.org/10.1371/journal.pone.0026207
61 https://doi.org/10.1371/journal.pone.0066213
62 https://doi.org/10.1371/journal.pone.0082400
63 https://doi.org/10.1371/journal.pone.0084518
64 https://doi.org/10.1371/journal.pone.0117201
65 https://doi.org/10.1371/journal.pone.0149673
66 https://doi.org/10.1371/journal.pone.0149985
67 https://doi.org/10.1371/journal.pone.0155541
68 https://doi.org/10.2307/2288118
69 https://doi.org/10.3897/zookeys.582.6301
70 https://doi.org/10.3897/zookeys.596.8669
71 https://doi.org/10.3897/zookeys.63.565
72 https://doi.org/10.3897/zookeys.679.12507
73 schema:datePublished 2019-12
74 schema:datePublishedReg 2019-12-01
75 schema:description BACKGROUND: DNA barcoding has been developed as a useful tool for species discrimination. Several sequence-based species delimitation methods, such as Barcode Index Number (BIN), REfined Single Linkage (RESL), Automatic Barcode Gap Discovery (ABGD), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP), were used. Our aim was to estimate Chinese katydid biodiversity using standard DNA barcode cytochrome c oxidase subunit I (COI-5P) sequences. RESULTS: Detection of a barcoding gap by similarity-based analyses and clustering-base analyses indicated that 131 identified morphological species (morphospecies) were assigned to 196 BINs and were divided into four categories: (i) MATCH (83/131 = 64.89%), morphospecies were a perfect match between morphospecies and BINs (including 61 concordant BINs and 22 singleton BINs); (ii) MERGE (14/131 = 10.69%), morphospecies shared its unique BIN with other species; (iii) SPLIT (33/131 = 25.19%, when 22 singleton species were excluded, it rose to 33/109 = 30.28%), morphospecies were placed in more than one BIN; (iv) MIXTURE (4/131 = 5.34%), morphospecies showed a more complex partition involving both a merge and a split. Neighbor-joining (NJ) analyses showed that nearly all BINs and most morphospecies formed monophyletic cluster with little variation. The molecular operational taxonomic units (MOTUs) were defined considering only the more inclusive clades found by at least four of seven species delimitation methods. Our results robustly supported 61 of 109 (55.96%) morphospecies represented by more than one specimen, 159 of 213 (74.65%) concordant BINs, and 3 of 8 (37.5%) discordant BINs. CONCLUSIONS: Molecular species delimitation analyses generated a larger number of MOTUs compared with morphospecies. If these MOTU splits are proven to be true, Chinese katydids probably contain a seemingly large proportion of cryptic/undescribed taxa. Future amplification of additional molecular markers, particularly from the nuclear DNA, may be especially useful for specimens that were identified here as problematic taxa.
76 schema:genre research_article
77 schema:inLanguage en
78 schema:isAccessibleForFree true
79 schema:isPartOf N88717185758b44d48aadeb011e92e9a7
80 Nc8deb8d118e54f0ea31c217b4f0ae92b
81 sg:journal.1024249
82 schema:name Singleton molecular species delimitation based on COI-5P barcode sequences revealed high cryptic/undescribed diversity for Chinese katydids (Orthoptera: Tettigoniidae)
83 schema:pagination 79
84 schema:productId N43204b1104b749b481035cf12ff3f185
85 N57c25a5b608a471e97ebfd6af44bbec0
86 Nd941fc5657854d4181c53ea9549e7302
87 Ndff845641eaf4af18eb807c59dbe5a44
88 Nf8bfe217d1074fb6a1f90a26c7a92e9c
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112768759
90 https://doi.org/10.1186/s12862-019-1404-5
91 schema:sdDatePublished 2019-04-11T13:19
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N7a71f7c0aaa0401e8c738f37d4d6147b
94 schema:url https://link.springer.com/10.1186%2Fs12862-019-1404-5
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N0046b9ec88834cb8a78f9f519510ecd4 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
99 schema:familyName Chai
100 schema:givenName Jinyan
101 rdf:type schema:Person
102 N1455725e106a4c7e89854cedf81d67a0 rdf:first N5cb4b1de2a5a445da5cede2f442d4219
103 rdf:rest N8767dea4cf3b48a5b402170a7833ef64
104 N18fbe7e8eae24fbab1512b8f4b977413 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
105 schema:familyName Han
106 schema:givenName Li
107 rdf:type schema:Person
108 N43204b1104b749b481035cf12ff3f185 schema:name dimensions_id
109 schema:value pub.1112768759
110 rdf:type schema:PropertyValue
111 N57c25a5b608a471e97ebfd6af44bbec0 schema:name nlm_unique_id
112 schema:value 100966975
113 rdf:type schema:PropertyValue
114 N5cb4b1de2a5a445da5cede2f442d4219 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
115 schema:familyName Che
116 schema:givenName Xuting
117 rdf:type schema:Person
118 N72b9d84d64f84539a9271d55cf1285c8 rdf:first N18fbe7e8eae24fbab1512b8f4b977413
119 rdf:rest Na43e8408be3f4a03a006f46238ddba7e
120 N77538d3d5eda4134b6cf55ee3da914e8 rdf:first N8d7b60d8fee046f983071570a7ad2e8b
121 rdf:rest Nb1bb83659f9a4999a2a3b3d78930e6e4
122 N7a71f7c0aaa0401e8c738f37d4d6147b schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N8767dea4cf3b48a5b402170a7833ef64 rdf:first Ne832f9c05e13465db1e9306cff6aee8d
125 rdf:rest rdf:nil
126 N88717185758b44d48aadeb011e92e9a7 schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 N8d7b60d8fee046f983071570a7ad2e8b schema:affiliation https://www.grid.ac/institutes/grid.256885.4
129 schema:familyName Zhou
130 schema:givenName Zhijun
131 rdf:type schema:Person
132 Na43e8408be3f4a03a006f46238ddba7e rdf:first N0046b9ec88834cb8a78f9f519510ecd4
133 rdf:rest N1455725e106a4c7e89854cedf81d67a0
134 Nb1bb83659f9a4999a2a3b3d78930e6e4 rdf:first Nbb31e549f7f24d57a578b7732d84c192
135 rdf:rest N72b9d84d64f84539a9271d55cf1285c8
136 Nbb31e549f7f24d57a578b7732d84c192 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
137 schema:familyName Guo
138 schema:givenName Huifang
139 rdf:type schema:Person
140 Nc8deb8d118e54f0ea31c217b4f0ae92b schema:volumeNumber 19
141 rdf:type schema:PublicationVolume
142 Nd941fc5657854d4181c53ea9549e7302 schema:name doi
143 schema:value 10.1186/s12862-019-1404-5
144 rdf:type schema:PropertyValue
145 Ndff845641eaf4af18eb807c59dbe5a44 schema:name readcube_id
146 schema:value f4d45b4febc712f88cb52eb1c24d67dd89d619fea0baba892b0e0f9417595adc
147 rdf:type schema:PropertyValue
148 Ne832f9c05e13465db1e9306cff6aee8d schema:affiliation https://www.grid.ac/institutes/grid.256885.4
149 schema:familyName Shi
150 schema:givenName Fuming
151 rdf:type schema:Person
152 Nf8bfe217d1074fb6a1f90a26c7a92e9c schema:name pubmed_id
153 schema:value 30871464
154 rdf:type schema:PropertyValue
155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
156 schema:name Biological Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
159 schema:name Genetics
160 rdf:type schema:DefinedTerm
161 sg:journal.1024249 schema:issn 1471-2148
162 schema:name BMC Evolutionary Biology
163 rdf:type schema:Periodical
164 sg:pub.10.1007/bf01731581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023239976
165 https://doi.org/10.1007/bf01731581
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s00265-011-1174-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004058025
168 https://doi.org/10.1007/s00265-011-1174-6
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s13353-013-0180-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033089722
171 https://doi.org/10.1007/s13353-013-0180-y
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmeth.2109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007540814
174 https://doi.org/10.1038/nmeth.2109
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1471-2105-11-206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033668912
177 https://doi.org/10.1186/1471-2105-11-206
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1471-2105-5-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040413794
180 https://doi.org/10.1186/1471-2105-5-113
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1471-2148-10-121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019150723
183 https://doi.org/10.1186/1471-2148-10-121
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1472-6785-12-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019016556
186 https://doi.org/10.1186/1472-6785-12-24
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/s12862-015-0460-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004268123
189 https://doi.org/10.1186/s12862-015-0460-8
190 rdf:type schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1074544756 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1082548824 schema:CreativeWork
193 https://doi.org/10.1016/j.tree.2006.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002696803
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ympev.2009.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015474663
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.ympev.2016.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019761398
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ympev.2016.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031736407
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.ympev.2017.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083743950
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1071/is12019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024721315
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.0803076105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022640167
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.1116812108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051705537
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1080/10635150600852011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041732393
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1080/10635150701701083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005731275
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1080/14772000.2017.1313792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085369722
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/bioinformatics/btg412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607942
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/btt499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040465639
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/molbev/mss075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013930907
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/molbev/mst064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032445904
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/molbev/msw054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012564990
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/sysbio/syp027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048715625
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/sysbio/syp039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010973782
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/sysbio/sys029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049138722
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/sysbio/sys037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036405191
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/sysbio/syw002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060048694
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/zoolinnean/zlw019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084602982
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1098/rsbl.2003.0025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048884524
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1111/1755-0998.12038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041584746
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1111/1755-0998.12150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002154825
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1111/1755-0998.12174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017655147
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1111/1755-0998.12441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050990547
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1111/1755-0998.12444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053632808
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/1755-0998.12638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006369464
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1111/1755-0998.12658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083548492
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1111/2041-210x.12107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043453182
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1111/j.1365-294x.2011.05239.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009521460
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1111/j.1365-294x.2012.05559.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010781588
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1111/j.1471-8286.2007.01678.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031314971
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1111/j.1755-0998.2009.02823.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048562945
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1111/jeb.12900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037658028
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1111/mec.12413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028018442
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1111/zoj.12039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007126625
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1128/jcm.00624-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052320994
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1146/annurev.ecolsys.34.011802.132421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047333044
272 rdf:type schema:CreativeWork
273 https://doi.org/10.11646/zootaxa.4120.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063380963
274 rdf:type schema:CreativeWork
275 https://doi.org/10.11646/zootaxa.4137.4.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063381338
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1371/annotation/1c419628-f1b5-45de-9f8a-43f834309ebb schema:sameAs https://app.dimensions.ai/details/publication/pub.1065266851
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1371/annotation/8c15cfdf-7bfe-4da1-a8c8-76d5d465f7b2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065268428
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1371/journal.pone.0019259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048597810
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1371/journal.pone.0026207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001895839
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1371/journal.pone.0066213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021982664
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1371/journal.pone.0082400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016371006
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1371/journal.pone.0084518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029382485
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1371/journal.pone.0117201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029272059
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1371/journal.pone.0149673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029343733
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1371/journal.pone.0149985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038864156
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1371/journal.pone.0155541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009997118
298 rdf:type schema:CreativeWork
299 https://doi.org/10.2307/2288118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069862461
300 rdf:type schema:CreativeWork
301 https://doi.org/10.3897/zookeys.582.6301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010084159
302 rdf:type schema:CreativeWork
303 https://doi.org/10.3897/zookeys.596.8669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044913401
304 rdf:type schema:CreativeWork
305 https://doi.org/10.3897/zookeys.63.565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040893347
306 rdf:type schema:CreativeWork
307 https://doi.org/10.3897/zookeys.679.12507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086016741
308 rdf:type schema:CreativeWork
309 https://www.grid.ac/institutes/grid.256885.4 schema:alternateName Hebei University
310 schema:name Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, 071002, Baoding, Hebei, China
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...