Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Pavel V. Shelyakin, Olga O. Bochkareva, Anna A. Karan, Mikhail S. Gelfand

ABSTRACT

BACKGROUND: The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae. RESULTS: Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions. The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity. Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism. CONCLUSIONS: Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines. More... »

PAGES

83

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6

DOI

http://dx.doi.org/10.1186/s12862-019-1403-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113049365

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30917781


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina str. 3, 119991, Moscow, Russia", 
            "Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia", 
            "Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shelyakin", 
        "givenName": "Pavel V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia", 
            "Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bochkareva", 
        "givenName": "Olga O.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karan", 
        "givenName": "Anna A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia", 
            "Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia", 
            "Faculty of Computer Science, Higher School of Economics, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gelfand", 
        "givenName": "Mikhail S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10096-013-1914-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000878133", 
          "https://doi.org/10.1007/s10096-013-1914-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10096-013-1914-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000878133", 
          "https://doi.org/10.1007/s10096-013-1914-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10096-013-1914-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000878133", 
          "https://doi.org/10.1007/s10096-013-1914-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(00)02159-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002131566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0134055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002735939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003116787", 
          "https://doi.org/10.1038/srep09835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003127501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004024856", 
          "https://doi.org/10.1038/nature11711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1096703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005360264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2001.02414.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006945495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007259041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0137760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008120255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0517-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008563065", 
          "https://doi.org/10.1186/s12859-015-0517-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0517-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008563065", 
          "https://doi.org/10.1186/s12859-015-0517-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012487019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2014.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013054811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-12-200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014789689", 
          "https://doi.org/10.1186/1471-2148-12-200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-3211-9.50009-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016180325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017501175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmicrobiol.2016.208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017555026", 
          "https://doi.org/10.1038/nmicrobiol.2016.208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1418789111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018424398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019198880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021481390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021744668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021782995", 
          "https://doi.org/10.1186/1471-2105-12-124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021782995", 
          "https://doi.org/10.1186/1471-2105-12-124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.4.1999-2012.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022014193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022171874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6759507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024110475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024432568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025846396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2005.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025951592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506758102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026870052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506758102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026870052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2183/pjab.91.539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028416244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meegid.2014.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028976374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030162543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-12-interactions1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031301121", 
          "https://doi.org/10.1186/gb-2001-2-12-interactions1004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031660323", 
          "https://doi.org/10.1038/nrmicro1767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1005762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032061196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0150908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032889422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.02285-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033134298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034056750", 
          "https://doi.org/10.1038/nrg3950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034194664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-10-r107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034216670", 
          "https://doi.org/10.1186/gb-2010-11-10-r107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1084/jem.79.2.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034562397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(02)02668-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035112844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1135(00)00250-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035368205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evu048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036143136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036320682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-11-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036594359", 
          "https://doi.org/10.1186/1471-2180-11-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1092603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037787590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/79918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037992750", 
          "https://doi.org/10.1038/79918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/79918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037992750", 
          "https://doi.org/10.1038/79918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2015.0160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039108365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2000-1-6-research0011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040639042", 
          "https://doi.org/10.1186/gb-2000-1-6-research0011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2602-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042090765", 
          "https://doi.org/10.1186/s12864-016-2602-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1413272111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042416568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tim.2012.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043183223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep16431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043189156", 
          "https://doi.org/10.1038/srep16431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0093907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043696027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0026742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046267843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046470836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047229767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-6-r103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047555346", 
          "https://doi.org/10.1186/gb-2007-8-6-r103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1672-0229(07)60007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048466991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40453-5_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050868498", 
          "https://doi.org/10.1007/978-3-642-40453-5_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051746887", 
          "https://doi.org/10.1186/1471-2164-12-523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2007.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052695427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evq003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053503957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022172400031879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054796993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/76.2.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.000326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060394230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.292.5518.803a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062573730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1389202916666150423002311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069178777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9740/mhc.2015.07.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074144637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.196154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083789624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.196154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083789624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.196154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083789624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmicrobiol.2017.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129362", 
          "https://doi.org/10.1038/nmicrobiol.2017.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-017-3655-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084250113", 
          "https://doi.org/10.1186/s12864-017-3655-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-017-3655-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084250113", 
          "https://doi.org/10.1186/s12864-017-3655-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.195784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084344357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.195784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084344357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.195784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084344357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msx127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084763869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086071609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2017.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092999123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gigascience/giy015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101334656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.4545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101817161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gky725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105930508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evy225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107556782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evy225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107556782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evy225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107556782"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae.\nRESULTS: Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions. The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity. Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism.\nCONCLUSIONS: Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12862-019-1403-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6738725", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow", 
    "pagination": "83", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12862-019-1403-6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f95fd48e21dadd5de68d71f2804129ef733877ada7fbe92fc1cbf59a38bcc6ff"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113049365"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30917781"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12862-019-1403-6", 
      "https://app.dimensions.ai/details/publication/pub.1113049365"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119717_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12862-019-1403-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6'


 

This table displays all metadata directly associated to this object as RDF triples.

361 TRIPLES      21 PREDICATES      110 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12862-019-1403-6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N414bfaf2c0864703a0a52b8b4108a431
4 schema:citation sg:pub.10.1007/978-3-642-40453-5_17
5 sg:pub.10.1007/s10096-013-1914-9
6 sg:pub.10.1038/79918
7 sg:pub.10.1038/nature11711
8 sg:pub.10.1038/nmicrobiol.2016.208
9 sg:pub.10.1038/nmicrobiol.2017.40
10 sg:pub.10.1038/nrg3950
11 sg:pub.10.1038/nrmicro1767
12 sg:pub.10.1038/srep09835
13 sg:pub.10.1038/srep16431
14 sg:pub.10.1186/1471-2105-12-124
15 sg:pub.10.1186/1471-2148-12-200
16 sg:pub.10.1186/1471-2164-12-523
17 sg:pub.10.1186/1471-2180-11-25
18 sg:pub.10.1186/gb-2000-1-6-research0011
19 sg:pub.10.1186/gb-2001-2-12-interactions1004
20 sg:pub.10.1186/gb-2007-8-6-r103
21 sg:pub.10.1186/gb-2010-11-10-r107
22 sg:pub.10.1186/s12859-015-0517-0
23 sg:pub.10.1186/s12864-016-2602-9
24 sg:pub.10.1186/s12864-017-3655-0
25 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
26 https://doi.org/10.1016/j.drudis.2007.04.008
27 https://doi.org/10.1016/j.gde.2005.09.006
28 https://doi.org/10.1016/j.jmb.2015.11.006
29 https://doi.org/10.1016/j.meegid.2014.11.007
30 https://doi.org/10.1016/j.mib.2014.11.016
31 https://doi.org/10.1016/j.mib.2017.11.016
32 https://doi.org/10.1016/j.tim.2012.06.004
33 https://doi.org/10.1016/s0168-9525(00)02159-4
34 https://doi.org/10.1016/s0168-9525(02)02668-9
35 https://doi.org/10.1016/s0378-1135(00)00250-9
36 https://doi.org/10.1016/s1672-0229(07)60007-2
37 https://doi.org/10.1017/s0022172400031879
38 https://doi.org/10.1046/j.1365-2958.2001.02414.x
39 https://doi.org/10.1073/pnas.0506758102
40 https://doi.org/10.1073/pnas.1413272111
41 https://doi.org/10.1073/pnas.1418789111
42 https://doi.org/10.1084/jem.79.2.137
43 https://doi.org/10.1089/cmb.2015.0160
44 https://doi.org/10.1093/bioinformatics/bth088
45 https://doi.org/10.1093/bioinformatics/bti047
46 https://doi.org/10.1093/bioinformatics/bti771
47 https://doi.org/10.1093/bioinformatics/btl446
48 https://doi.org/10.1093/bioinformatics/btr064
49 https://doi.org/10.1093/bioinformatics/btu031
50 https://doi.org/10.1093/biomet/76.2.297
51 https://doi.org/10.1093/gbe/evq003
52 https://doi.org/10.1093/gbe/evu048
53 https://doi.org/10.1093/gbe/evy225
54 https://doi.org/10.1093/gigascience/giy015
55 https://doi.org/10.1093/molbev/msx127
56 https://doi.org/10.1093/nar/gkg037
57 https://doi.org/10.1093/nar/gkh340
58 https://doi.org/10.1093/nar/gkl791
59 https://doi.org/10.1093/nar/gkn668
60 https://doi.org/10.1093/nar/gkr485
61 https://doi.org/10.1093/nar/gkw1071
62 https://doi.org/10.1093/nar/gky725
63 https://doi.org/10.1099/mic.0.000326
64 https://doi.org/10.1101/gr.1092603
65 https://doi.org/10.1101/gr.1096703
66 https://doi.org/10.1101/gr.6759507
67 https://doi.org/10.1126/science.292.5518.803a
68 https://doi.org/10.1128/aem.70.4.1999-2012.2004
69 https://doi.org/10.1128/jb.02285-12
70 https://doi.org/10.1371/journal.pcbi.1002173
71 https://doi.org/10.1371/journal.pgen.1000128
72 https://doi.org/10.1371/journal.pgen.1006847
73 https://doi.org/10.1371/journal.pone.0026742
74 https://doi.org/10.1371/journal.pone.0093907
75 https://doi.org/10.1371/journal.pone.0134055
76 https://doi.org/10.1371/journal.pone.0137760
77 https://doi.org/10.1371/journal.pone.0150908
78 https://doi.org/10.1371/journal.ppat.1005762
79 https://doi.org/10.1534/genetics.116.195784
80 https://doi.org/10.1534/genetics.116.196154
81 https://doi.org/10.2174/1389202916666150423002311
82 https://doi.org/10.2183/pjab.91.539
83 https://doi.org/10.7717/peerj.4545
84 https://doi.org/10.9740/mhc.2015.07.184
85 schema:datePublished 2019-12
86 schema:datePublishedReg 2019-12-01
87 schema:description BACKGROUND: The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae. RESULTS: Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions. The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity. Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism. CONCLUSIONS: Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines.
88 schema:genre research_article
89 schema:inLanguage en
90 schema:isAccessibleForFree true
91 schema:isPartOf N052915d32408416db780f19bdd711cd4
92 Nb29928e8dc6b42b2a04f1dacd3451ad3
93 sg:journal.1024249
94 schema:name Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow
95 schema:pagination 83
96 schema:productId N427dd61fe7b247ecbb80d303f1d96d0a
97 N6714dee09b3d4916a7ce3316083bd859
98 N928944ae372848e294f8d08fe0faed55
99 Nc0d86f9e949541b388eefa5654a61d60
100 Nc2a06128251146a3ab58242a20966315
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113049365
102 https://doi.org/10.1186/s12862-019-1403-6
103 schema:sdDatePublished 2019-04-15T08:48
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher Nf6087c415c5d489b93be449ce4d25a5f
106 schema:url https://link.springer.com/10.1186%2Fs12862-019-1403-6
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N052915d32408416db780f19bdd711cd4 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N0afcc98828c34a70b227d10199fe6d28 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
113 schema:familyName Gelfand
114 schema:givenName Mikhail S.
115 rdf:type schema:Person
116 N414bfaf2c0864703a0a52b8b4108a431 rdf:first Nf7250d11abdd49a2ac008a35652775d8
117 rdf:rest Nb60d960fdd5b4caca4c57f78437b91a5
118 N427dd61fe7b247ecbb80d303f1d96d0a schema:name pubmed_id
119 schema:value 30917781
120 rdf:type schema:PropertyValue
121 N492091dd860d4bb5802f851d95cebce7 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
122 schema:familyName Bochkareva
123 schema:givenName Olga O.
124 rdf:type schema:Person
125 N6714dee09b3d4916a7ce3316083bd859 schema:name readcube_id
126 schema:value f95fd48e21dadd5de68d71f2804129ef733877ada7fbe92fc1cbf59a38bcc6ff
127 rdf:type schema:PropertyValue
128 N928944ae372848e294f8d08fe0faed55 schema:name doi
129 schema:value 10.1186/s12862-019-1403-6
130 rdf:type schema:PropertyValue
131 N9f5b7611093b4006aca40573bd1dbb4f schema:affiliation https://www.grid.ac/institutes/grid.14476.30
132 schema:familyName Karan
133 schema:givenName Anna A.
134 rdf:type schema:Person
135 Nb29928e8dc6b42b2a04f1dacd3451ad3 schema:volumeNumber 19
136 rdf:type schema:PublicationVolume
137 Nb60d960fdd5b4caca4c57f78437b91a5 rdf:first N492091dd860d4bb5802f851d95cebce7
138 rdf:rest Nc0813f2b0c0241f78df7c226f3b36b71
139 Nbfe9fc2cd7544560aab09b440efd8c6f rdf:first N0afcc98828c34a70b227d10199fe6d28
140 rdf:rest rdf:nil
141 Nc0813f2b0c0241f78df7c226f3b36b71 rdf:first N9f5b7611093b4006aca40573bd1dbb4f
142 rdf:rest Nbfe9fc2cd7544560aab09b440efd8c6f
143 Nc0d86f9e949541b388eefa5654a61d60 schema:name dimensions_id
144 schema:value pub.1113049365
145 rdf:type schema:PropertyValue
146 Nc2a06128251146a3ab58242a20966315 schema:name nlm_unique_id
147 schema:value 100966975
148 rdf:type schema:PropertyValue
149 Nf6087c415c5d489b93be449ce4d25a5f schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 Nf7250d11abdd49a2ac008a35652775d8 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
152 schema:familyName Shelyakin
153 schema:givenName Pavel V.
154 rdf:type schema:Person
155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
156 schema:name Biological Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
159 schema:name Genetics
160 rdf:type schema:DefinedTerm
161 sg:grant.6738725 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-019-1403-6
162 rdf:type schema:MonetaryGrant
163 sg:journal.1024249 schema:issn 1471-2148
164 schema:name BMC Evolutionary Biology
165 rdf:type schema:Periodical
166 sg:pub.10.1007/978-3-642-40453-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050868498
167 https://doi.org/10.1007/978-3-642-40453-5_17
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s10096-013-1914-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000878133
170 https://doi.org/10.1007/s10096-013-1914-9
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/79918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037992750
173 https://doi.org/10.1038/79918
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nature11711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004024856
176 https://doi.org/10.1038/nature11711
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nmicrobiol.2016.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017555026
179 https://doi.org/10.1038/nmicrobiol.2016.208
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nmicrobiol.2017.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129362
182 https://doi.org/10.1038/nmicrobiol.2017.40
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nrg3950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034056750
185 https://doi.org/10.1038/nrg3950
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nrmicro1767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031660323
188 https://doi.org/10.1038/nrmicro1767
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/srep09835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003116787
191 https://doi.org/10.1038/srep09835
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/srep16431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043189156
194 https://doi.org/10.1038/srep16431
195 rdf:type schema:CreativeWork
196 sg:pub.10.1186/1471-2105-12-124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021782995
197 https://doi.org/10.1186/1471-2105-12-124
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/1471-2148-12-200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014789689
200 https://doi.org/10.1186/1471-2148-12-200
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1471-2164-12-523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051746887
203 https://doi.org/10.1186/1471-2164-12-523
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/1471-2180-11-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036594359
206 https://doi.org/10.1186/1471-2180-11-25
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/gb-2000-1-6-research0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040639042
209 https://doi.org/10.1186/gb-2000-1-6-research0011
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/gb-2001-2-12-interactions1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031301121
212 https://doi.org/10.1186/gb-2001-2-12-interactions1004
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/gb-2007-8-6-r103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047555346
215 https://doi.org/10.1186/gb-2007-8-6-r103
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/gb-2010-11-10-r107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034216670
218 https://doi.org/10.1186/gb-2010-11-10-r107
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/s12859-015-0517-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008563065
221 https://doi.org/10.1186/s12859-015-0517-0
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/s12864-016-2602-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042090765
224 https://doi.org/10.1186/s12864-016-2602-9
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/s12864-017-3655-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084250113
227 https://doi.org/10.1186/s12864-017-3655-0
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180325
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.drudis.2007.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052695427
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.gde.2005.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025951592
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.jmb.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017501175
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.meegid.2014.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028976374
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.mib.2014.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013054811
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.mib.2017.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092999123
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.tim.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043183223
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/s0168-9525(00)02159-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002131566
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/s0168-9525(02)02668-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035112844
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/s0378-1135(00)00250-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035368205
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/s1672-0229(07)60007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048466991
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1017/s0022172400031879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054796993
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1046/j.1365-2958.2001.02414.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006945495
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1073/pnas.0506758102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026870052
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1073/pnas.1413272111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416568
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1073/pnas.1418789111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018424398
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1084/jem.79.2.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034562397
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1089/cmb.2015.0160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039108365
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/bioinformatics/bth088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022171874
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/bioinformatics/bti047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024432568
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/bioinformatics/bti771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047229767
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1093/bioinformatics/btl446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046470836
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1093/bioinformatics/btr064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034194664
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1093/bioinformatics/btu031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036320682
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1093/biomet/76.2.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419926
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1093/gbe/evq003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053503957
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1093/gbe/evu048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036143136
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1093/gbe/evy225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107556782
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1093/gigascience/giy015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101334656
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1093/molbev/msx127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084763869
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1093/nar/gkg037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030162543
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1093/nar/gkl791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021744668
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1093/nar/gkn668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003127501
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1093/nar/gkr485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007259041
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1093/nar/gkw1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012487019
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1093/nar/gky725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105930508
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1099/mic.0.000326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060394230
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1101/gr.1092603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037787590
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1101/gr.1096703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005360264
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1101/gr.6759507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024110475
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1126/science.292.5518.803a schema:sameAs https://app.dimensions.ai/details/publication/pub.1062573730
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1128/aem.70.4.1999-2012.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022014193
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1128/jb.02285-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033134298
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1371/journal.pcbi.1002173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019198880
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1371/journal.pgen.1000128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021481390
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1371/journal.pgen.1006847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086071609
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1371/journal.pone.0026742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046267843
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1371/journal.pone.0093907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043696027
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1371/journal.pone.0134055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735939
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1371/journal.pone.0137760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008120255
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1371/journal.pone.0150908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032889422
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1371/journal.ppat.1005762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032061196
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1534/genetics.116.195784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084344357
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1534/genetics.116.196154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083789624
340 rdf:type schema:CreativeWork
341 https://doi.org/10.2174/1389202916666150423002311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069178777
342 rdf:type schema:CreativeWork
343 https://doi.org/10.2183/pjab.91.539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028416244
344 rdf:type schema:CreativeWork
345 https://doi.org/10.7717/peerj.4545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101817161
346 rdf:type schema:CreativeWork
347 https://doi.org/10.9740/mhc.2015.07.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074144637
348 rdf:type schema:CreativeWork
349 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
350 schema:name Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
351 rdf:type schema:Organization
352 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
353 schema:name Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
354 Faculty of Computer Science, Higher School of Economics, Moscow, Russia
355 Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia
356 rdf:type schema:Organization
357 https://www.grid.ac/institutes/grid.454320.4 schema:alternateName Skolkovo Institute of Science and Technology
358 schema:name Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
359 Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia
360 Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina str. 3, 119991, Moscow, Russia
361 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...