Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Pavel V. Shelyakin, Olga O. Bochkareva, Anna A. Karan, Mikhail S. Gelfand

ABSTRACT

BACKGROUND: The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae. RESULTS: Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions. The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity. Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism. CONCLUSIONS: Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines. More... »

PAGES

83

References to SciGraph publications

  • 2015-09. Isolation and characterization of a native avirulent strain of Streptococcus suis serotype 2: a perspective for vaccine development in SCIENTIFIC REPORTS
  • 2010-10. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species in GENOME BIOLOGY
  • 2017-12. Core-genome scaffold comparison reveals the prevalence that inversion events are associated with pairs of inverted repeats in BMC GENOMICS
  • 2007-11. Inventing the dynamo machine: the evolution of the F-type and V-type ATPases in NATURE REVIEWS MICROBIOLOGY
  • 2012-12-05. Genomic variation landscape of the human gut microbiome in NATURE
  • 2001-12. Flip-flop around the origin and terminus of replication in prokaryotic genomes in GENOME BIOLOGY
  • 2011-12. Proteinortho: Detection of (Co-)orthologs in large-scale analysis in BMC BIOINFORMATICS
  • 2007-06. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains in GENOME BIOLOGY
  • 2000-10. Genome rearrangement by replication-directed translocation in NATURE GENETICS
  • 2017-04. Why prokaryotes have pangenomes in NATURE MICROBIOLOGY
  • 2016-12. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis – a rich resource to identify new transcripts, proteins and to study gene regulation in BMC GENOMICS
  • 2011-12. Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes in BMC GENOMICS
  • 2011-12. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniaeinvasive isolate in BMC MICROBIOLOGY
  • 2015-12. Essentiality drives the orientation bias of bacterial genes in a continuous manner in SCIENTIFIC REPORTS
  • 2000-12. Evidence for symmetric chromosomal inversions around the replication origin in bacteria in GENOME BIOLOGY
  • 2017-03. Two fundamentally different classes of microbial genes in NATURE MICROBIOLOGY
  • 2015-12. micropan: an R-package for microbial pan-genomics in BMC BIOINFORMATICS
  • 2012-12. Evolution of transcriptional regulation in closely related bacteria in BMC EVOLUTIONARY BIOLOGY
  • 2013-11. The pathogenicity of the Streptococcus genus in EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES
  • 2013. Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool for Closely Related Microbial Genomes in ALGORITHMS IN BIOINFORMATICS
  • 2015-07. Determinants of the rate of protein sequence evolution in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6

    DOI

    http://dx.doi.org/10.1186/s12862-019-1403-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113049365

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30917781


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Skolkovo Institute of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.454320.4", 
              "name": [
                "Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina str. 3, 119991, Moscow, Russia", 
                "Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia", 
                "Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shelyakin", 
            "givenName": "Pavel V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Skolkovo Institute of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.454320.4", 
              "name": [
                "Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia", 
                "Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bochkareva", 
            "givenName": "Olga O.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karan", 
            "givenName": "Anna A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research University Higher School of Economics", 
              "id": "https://www.grid.ac/institutes/grid.410682.9", 
              "name": [
                "Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia", 
                "Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia", 
                "Faculty of Computer Science, Higher School of Economics, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gelfand", 
            "givenName": "Mikhail S.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10096-013-1914-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000878133", 
              "https://doi.org/10.1007/s10096-013-1914-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10096-013-1914-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000878133", 
              "https://doi.org/10.1007/s10096-013-1914-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10096-013-1914-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000878133", 
              "https://doi.org/10.1007/s10096-013-1914-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(00)02159-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002131566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0134055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002735939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003116787", 
              "https://doi.org/10.1038/srep09835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003127501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004024856", 
              "https://doi.org/10.1038/nature11711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1096703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005360264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2958.2001.02414.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006945495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007259041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0137760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008120255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-015-0517-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008563065", 
              "https://doi.org/10.1186/s12859-015-0517-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-015-0517-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008563065", 
              "https://doi.org/10.1186/s12859-015-0517-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012487019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mib.2014.11.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013054811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-12-200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014789689", 
              "https://doi.org/10.1186/1471-2148-12-200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-4832-3211-9.50009-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016180325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2015.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017501175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017555026", 
              "https://doi.org/10.1038/nmicrobiol.2016.208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1418789111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018424398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019198880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021481390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021744668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021782995", 
              "https://doi.org/10.1186/1471-2105-12-124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021782995", 
              "https://doi.org/10.1186/1471-2105-12-124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.70.4.1999-2012.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022014193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022171874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6759507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024110475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024432568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025846396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gde.2005.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025951592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506758102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026870052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506758102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026870052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2183/pjab.91.539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028416244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.meegid.2014.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028976374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030162543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2001-2-12-interactions1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031301121", 
              "https://doi.org/10.1186/gb-2001-2-12-interactions1004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031660323", 
              "https://doi.org/10.1038/nrmicro1767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.ppat.1005762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032061196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0150908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032889422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.02285-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033134298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034056750", 
              "https://doi.org/10.1038/nrg3950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034194664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-10-r107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034216670", 
              "https://doi.org/10.1186/gb-2010-11-10-r107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1084/jem.79.2.137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034562397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(02)02668-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035112844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-1135(00)00250-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035368205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evu048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036143136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036320682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-11-25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036594359", 
              "https://doi.org/10.1186/1471-2180-11-25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1092603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037787590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/79918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037992750", 
              "https://doi.org/10.1038/79918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/79918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037992750", 
              "https://doi.org/10.1038/79918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2015.0160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039108365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2000-1-6-research0011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040639042", 
              "https://doi.org/10.1186/gb-2000-1-6-research0011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2602-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042090765", 
              "https://doi.org/10.1186/s12864-016-2602-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1413272111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042416568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tim.2012.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043183223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep16431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043189156", 
              "https://doi.org/10.1038/srep16431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0093907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043696027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0026742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046267843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046470836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047229767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-6-r103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047555346", 
              "https://doi.org/10.1186/gb-2007-8-6-r103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1672-0229(07)60007-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048466991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40453-5_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050868498", 
              "https://doi.org/10.1007/978-3-642-40453-5_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051746887", 
              "https://doi.org/10.1186/1471-2164-12-523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.drudis.2007.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052695427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evq003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053503957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022172400031879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054796993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/76.2.297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059419926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/mic.0.000326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060394230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.292.5518.803a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062573730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1389202916666150423002311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069178777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.9740/mhc.2015.07.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074144637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.196154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083789624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.196154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083789624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.196154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083789624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2017.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129362", 
              "https://doi.org/10.1038/nmicrobiol.2017.40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-3655-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084250113", 
              "https://doi.org/10.1186/s12864-017-3655-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-3655-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084250113", 
              "https://doi.org/10.1186/s12864-017-3655-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.195784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084344357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.195784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084344357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.116.195784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084344357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msx127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084763869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1006847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086071609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mib.2017.11.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092999123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gigascience/giy015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101334656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.4545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101817161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gky725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105930508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evy225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107556782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evy225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107556782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evy225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107556782"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae.\nRESULTS: Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions. The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity. Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism.\nCONCLUSIONS: Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12862-019-1403-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6738725", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024249", 
            "issn": [
              "1471-2148"
            ], 
            "name": "BMC Evolutionary Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow", 
        "pagination": "83", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12862-019-1403-6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f95fd48e21dadd5de68d71f2804129ef733877ada7fbe92fc1cbf59a38bcc6ff"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113049365"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100966975"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30917781"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12862-019-1403-6", 
          "https://app.dimensions.ai/details/publication/pub.1113049365"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119717_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12862-019-1403-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1403-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    361 TRIPLES      21 PREDICATES      110 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12862-019-1403-6 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N287c398d1c194a8fbba23d7e3e6cc799
    4 schema:citation sg:pub.10.1007/978-3-642-40453-5_17
    5 sg:pub.10.1007/s10096-013-1914-9
    6 sg:pub.10.1038/79918
    7 sg:pub.10.1038/nature11711
    8 sg:pub.10.1038/nmicrobiol.2016.208
    9 sg:pub.10.1038/nmicrobiol.2017.40
    10 sg:pub.10.1038/nrg3950
    11 sg:pub.10.1038/nrmicro1767
    12 sg:pub.10.1038/srep09835
    13 sg:pub.10.1038/srep16431
    14 sg:pub.10.1186/1471-2105-12-124
    15 sg:pub.10.1186/1471-2148-12-200
    16 sg:pub.10.1186/1471-2164-12-523
    17 sg:pub.10.1186/1471-2180-11-25
    18 sg:pub.10.1186/gb-2000-1-6-research0011
    19 sg:pub.10.1186/gb-2001-2-12-interactions1004
    20 sg:pub.10.1186/gb-2007-8-6-r103
    21 sg:pub.10.1186/gb-2010-11-10-r107
    22 sg:pub.10.1186/s12859-015-0517-0
    23 sg:pub.10.1186/s12864-016-2602-9
    24 sg:pub.10.1186/s12864-017-3655-0
    25 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
    26 https://doi.org/10.1016/j.drudis.2007.04.008
    27 https://doi.org/10.1016/j.gde.2005.09.006
    28 https://doi.org/10.1016/j.jmb.2015.11.006
    29 https://doi.org/10.1016/j.meegid.2014.11.007
    30 https://doi.org/10.1016/j.mib.2014.11.016
    31 https://doi.org/10.1016/j.mib.2017.11.016
    32 https://doi.org/10.1016/j.tim.2012.06.004
    33 https://doi.org/10.1016/s0168-9525(00)02159-4
    34 https://doi.org/10.1016/s0168-9525(02)02668-9
    35 https://doi.org/10.1016/s0378-1135(00)00250-9
    36 https://doi.org/10.1016/s1672-0229(07)60007-2
    37 https://doi.org/10.1017/s0022172400031879
    38 https://doi.org/10.1046/j.1365-2958.2001.02414.x
    39 https://doi.org/10.1073/pnas.0506758102
    40 https://doi.org/10.1073/pnas.1413272111
    41 https://doi.org/10.1073/pnas.1418789111
    42 https://doi.org/10.1084/jem.79.2.137
    43 https://doi.org/10.1089/cmb.2015.0160
    44 https://doi.org/10.1093/bioinformatics/bth088
    45 https://doi.org/10.1093/bioinformatics/bti047
    46 https://doi.org/10.1093/bioinformatics/bti771
    47 https://doi.org/10.1093/bioinformatics/btl446
    48 https://doi.org/10.1093/bioinformatics/btr064
    49 https://doi.org/10.1093/bioinformatics/btu031
    50 https://doi.org/10.1093/biomet/76.2.297
    51 https://doi.org/10.1093/gbe/evq003
    52 https://doi.org/10.1093/gbe/evu048
    53 https://doi.org/10.1093/gbe/evy225
    54 https://doi.org/10.1093/gigascience/giy015
    55 https://doi.org/10.1093/molbev/msx127
    56 https://doi.org/10.1093/nar/gkg037
    57 https://doi.org/10.1093/nar/gkh340
    58 https://doi.org/10.1093/nar/gkl791
    59 https://doi.org/10.1093/nar/gkn668
    60 https://doi.org/10.1093/nar/gkr485
    61 https://doi.org/10.1093/nar/gkw1071
    62 https://doi.org/10.1093/nar/gky725
    63 https://doi.org/10.1099/mic.0.000326
    64 https://doi.org/10.1101/gr.1092603
    65 https://doi.org/10.1101/gr.1096703
    66 https://doi.org/10.1101/gr.6759507
    67 https://doi.org/10.1126/science.292.5518.803a
    68 https://doi.org/10.1128/aem.70.4.1999-2012.2004
    69 https://doi.org/10.1128/jb.02285-12
    70 https://doi.org/10.1371/journal.pcbi.1002173
    71 https://doi.org/10.1371/journal.pgen.1000128
    72 https://doi.org/10.1371/journal.pgen.1006847
    73 https://doi.org/10.1371/journal.pone.0026742
    74 https://doi.org/10.1371/journal.pone.0093907
    75 https://doi.org/10.1371/journal.pone.0134055
    76 https://doi.org/10.1371/journal.pone.0137760
    77 https://doi.org/10.1371/journal.pone.0150908
    78 https://doi.org/10.1371/journal.ppat.1005762
    79 https://doi.org/10.1534/genetics.116.195784
    80 https://doi.org/10.1534/genetics.116.196154
    81 https://doi.org/10.2174/1389202916666150423002311
    82 https://doi.org/10.2183/pjab.91.539
    83 https://doi.org/10.7717/peerj.4545
    84 https://doi.org/10.9740/mhc.2015.07.184
    85 schema:datePublished 2019-12
    86 schema:datePublishedReg 2019-12-01
    87 schema:description BACKGROUND: The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae. RESULTS: Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions. The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity. Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism. CONCLUSIONS: Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines.
    88 schema:genre research_article
    89 schema:inLanguage en
    90 schema:isAccessibleForFree true
    91 schema:isPartOf N5daf1267a9cb46d38fb10b9b59f828b5
    92 N6a522c258518473b8f3a59acd3f2a33a
    93 sg:journal.1024249
    94 schema:name Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow
    95 schema:pagination 83
    96 schema:productId N36302044c46f4f1eaca04defba65dd13
    97 Na22c928a1d6c4564afa4a7a39e38cab2
    98 Nd0903268eaf449b7a08af0f92b20ccca
    99 Nd0e5918490804bcda9dcbbf8e9c23947
    100 Ne2a2a83868ca4dba96064274278a77ce
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113049365
    102 https://doi.org/10.1186/s12862-019-1403-6
    103 schema:sdDatePublished 2019-04-15T08:48
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher N10db22e3c5ae4e45bb5b523d7b1eae48
    106 schema:url https://link.springer.com/10.1186%2Fs12862-019-1403-6
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N10db22e3c5ae4e45bb5b523d7b1eae48 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 N16a6e65c67d346bf907fce074d6e9483 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
    113 schema:familyName Bochkareva
    114 schema:givenName Olga O.
    115 rdf:type schema:Person
    116 N287c398d1c194a8fbba23d7e3e6cc799 rdf:first Na39e7c48f5ff431388152932f4ced379
    117 rdf:rest Na340fa12268b414eaae59196bf63440d
    118 N34c75b6ad09145bfab72c1ed8aaece05 rdf:first Nc2e5492d66ac426ca7b3649780b78476
    119 rdf:rest rdf:nil
    120 N36302044c46f4f1eaca04defba65dd13 schema:name doi
    121 schema:value 10.1186/s12862-019-1403-6
    122 rdf:type schema:PropertyValue
    123 N5daf1267a9cb46d38fb10b9b59f828b5 schema:issueNumber 1
    124 rdf:type schema:PublicationIssue
    125 N6a522c258518473b8f3a59acd3f2a33a schema:volumeNumber 19
    126 rdf:type schema:PublicationVolume
    127 N777d463ed6894295a096ca471deafa0b schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    128 schema:familyName Karan
    129 schema:givenName Anna A.
    130 rdf:type schema:Person
    131 Na22c928a1d6c4564afa4a7a39e38cab2 schema:name pubmed_id
    132 schema:value 30917781
    133 rdf:type schema:PropertyValue
    134 Na340fa12268b414eaae59196bf63440d rdf:first N16a6e65c67d346bf907fce074d6e9483
    135 rdf:rest Nfb056579be7f4f46ae766297086b591b
    136 Na39e7c48f5ff431388152932f4ced379 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
    137 schema:familyName Shelyakin
    138 schema:givenName Pavel V.
    139 rdf:type schema:Person
    140 Nc2e5492d66ac426ca7b3649780b78476 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
    141 schema:familyName Gelfand
    142 schema:givenName Mikhail S.
    143 rdf:type schema:Person
    144 Nd0903268eaf449b7a08af0f92b20ccca schema:name readcube_id
    145 schema:value f95fd48e21dadd5de68d71f2804129ef733877ada7fbe92fc1cbf59a38bcc6ff
    146 rdf:type schema:PropertyValue
    147 Nd0e5918490804bcda9dcbbf8e9c23947 schema:name nlm_unique_id
    148 schema:value 100966975
    149 rdf:type schema:PropertyValue
    150 Ne2a2a83868ca4dba96064274278a77ce schema:name dimensions_id
    151 schema:value pub.1113049365
    152 rdf:type schema:PropertyValue
    153 Nfb056579be7f4f46ae766297086b591b rdf:first N777d463ed6894295a096ca471deafa0b
    154 rdf:rest N34c75b6ad09145bfab72c1ed8aaece05
    155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biological Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Genetics
    160 rdf:type schema:DefinedTerm
    161 sg:grant.6738725 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-019-1403-6
    162 rdf:type schema:MonetaryGrant
    163 sg:journal.1024249 schema:issn 1471-2148
    164 schema:name BMC Evolutionary Biology
    165 rdf:type schema:Periodical
    166 sg:pub.10.1007/978-3-642-40453-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050868498
    167 https://doi.org/10.1007/978-3-642-40453-5_17
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s10096-013-1914-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000878133
    170 https://doi.org/10.1007/s10096-013-1914-9
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/79918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037992750
    173 https://doi.org/10.1038/79918
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nature11711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004024856
    176 https://doi.org/10.1038/nature11711
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nmicrobiol.2016.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017555026
    179 https://doi.org/10.1038/nmicrobiol.2016.208
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nmicrobiol.2017.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129362
    182 https://doi.org/10.1038/nmicrobiol.2017.40
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nrg3950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034056750
    185 https://doi.org/10.1038/nrg3950
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nrmicro1767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031660323
    188 https://doi.org/10.1038/nrmicro1767
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/srep09835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003116787
    191 https://doi.org/10.1038/srep09835
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/srep16431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043189156
    194 https://doi.org/10.1038/srep16431
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/1471-2105-12-124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021782995
    197 https://doi.org/10.1186/1471-2105-12-124
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/1471-2148-12-200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014789689
    200 https://doi.org/10.1186/1471-2148-12-200
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1186/1471-2164-12-523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051746887
    203 https://doi.org/10.1186/1471-2164-12-523
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/1471-2180-11-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036594359
    206 https://doi.org/10.1186/1471-2180-11-25
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/gb-2000-1-6-research0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040639042
    209 https://doi.org/10.1186/gb-2000-1-6-research0011
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/gb-2001-2-12-interactions1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031301121
    212 https://doi.org/10.1186/gb-2001-2-12-interactions1004
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/gb-2007-8-6-r103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047555346
    215 https://doi.org/10.1186/gb-2007-8-6-r103
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/gb-2010-11-10-r107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034216670
    218 https://doi.org/10.1186/gb-2010-11-10-r107
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/s12859-015-0517-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008563065
    221 https://doi.org/10.1186/s12859-015-0517-0
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/s12864-016-2602-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042090765
    224 https://doi.org/10.1186/s12864-016-2602-9
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/s12864-017-3655-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084250113
    227 https://doi.org/10.1186/s12864-017-3655-0
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180325
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.drudis.2007.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052695427
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.gde.2005.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025951592
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.jmb.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017501175
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.meegid.2014.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028976374
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.mib.2014.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013054811
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.mib.2017.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092999123
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/j.tim.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043183223
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/s0168-9525(00)02159-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002131566
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/s0168-9525(02)02668-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035112844
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/s0378-1135(00)00250-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035368205
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/s1672-0229(07)60007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048466991
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1017/s0022172400031879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054796993
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1046/j.1365-2958.2001.02414.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006945495
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1073/pnas.0506758102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026870052
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1073/pnas.1413272111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416568
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1073/pnas.1418789111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018424398
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1084/jem.79.2.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034562397
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1089/cmb.2015.0160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039108365
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1093/bioinformatics/bth088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022171874
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1093/bioinformatics/bti047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024432568
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1093/bioinformatics/bti771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047229767
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1093/bioinformatics/btl446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046470836
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/btr064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034194664
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/bioinformatics/btu031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036320682
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1093/biomet/76.2.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419926
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1093/gbe/evq003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053503957
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1093/gbe/evu048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036143136
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/gbe/evy225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107556782
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/gigascience/giy015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101334656
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/molbev/msx127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084763869
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1093/nar/gkg037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030162543
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1093/nar/gkl791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021744668
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1093/nar/gkn668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003127501
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1093/nar/gkr485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007259041
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1093/nar/gkw1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012487019
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1093/nar/gky725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105930508
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1099/mic.0.000326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060394230
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1101/gr.1092603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037787590
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1101/gr.1096703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005360264
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1101/gr.6759507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024110475
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1126/science.292.5518.803a schema:sameAs https://app.dimensions.ai/details/publication/pub.1062573730
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1128/aem.70.4.1999-2012.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022014193
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1128/jb.02285-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033134298
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1371/journal.pcbi.1002173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019198880
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1371/journal.pgen.1000128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021481390
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1371/journal.pgen.1006847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086071609
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1371/journal.pone.0026742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046267843
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1371/journal.pone.0093907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043696027
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1371/journal.pone.0134055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735939
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1371/journal.pone.0137760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008120255
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1371/journal.pone.0150908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032889422
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1371/journal.ppat.1005762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032061196
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1534/genetics.116.195784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084344357
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1534/genetics.116.196154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083789624
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.2174/1389202916666150423002311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069178777
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.2183/pjab.91.539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028416244
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.7717/peerj.4545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101817161
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.9740/mhc.2015.07.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074144637
    348 rdf:type schema:CreativeWork
    349 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    350 schema:name Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
    351 rdf:type schema:Organization
    352 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
    353 schema:name Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
    354 Faculty of Computer Science, Higher School of Economics, Moscow, Russia
    355 Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia
    356 rdf:type schema:Organization
    357 https://www.grid.ac/institutes/grid.454320.4 schema:alternateName Skolkovo Institute of Science and Technology
    358 schema:name Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
    359 Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., 127051, Moscow, Russia
    360 Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina str. 3, 119991, Moscow, Russia
    361 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...