Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-09

AUTHORS

Pengjun Xu, Bin Lu, Jinyan Liu, Jiangtao Chao, Philip Donkersley, Robert Holdbrook, Yanhui Lu

ABSTRACT

BackgroudHorizontal gene transfer and gene duplication are two major mechanisms contributing to the evolutionary adaptation of organisms. Previously, polygalacturonase genes (PGs) were independently horizontally transferred and underwent multiple duplications in insects (e.g., mirid bugs and beetles). Here, we chose three phytozoophagous mirid bugs (Adelphocoris suturalis, A. fasciaticollis, A. lineolatus) and one zoophytophagous mirid bug (Nesidiocoris tenuis) to detect whether the duplication, molecular evolution, and expression levels of PGs were related to host range expansion in mirid bugs.ResultsBy RNA-seq, we reported 30, 20, 19 and 8 PGs in A. suturalis, A. fasciaticollis, A. lineolatus and N. tenuis, respectively. Interestingly, the number of PGs was significantly positive correlation to the number of host plants (P = 0.0339) in mirid bugs. Most PGs (> 17) were highly expressed in the three phytozoophagous mirid bugs, while only one PG was relatively highly expressed in the zoophytophagous mirid bug. Natural selection analysis clearly showed that a significant relaxation of selection pressure acted on the PGs in zoophytophagous mirid bugs (K = 0.546, P = 0.0158) rather than in phytozoophagous mirid bugs (K = 1, P = 0.92), suggesting a function constraint of PGs in phytozoophagous mirid bugs.ConclusionTaken together with gene duplication, molecular evolution, and expression levels, our results suggest that PGs are more strictly required by phytozoophagous than by zoophytophagous mirid bugs and that the duplication of PGs is associated with the expansion of host plant ranges in mirid bugs. More... »

PAGES

12

References to SciGraph publications

  • 2013-03-20. Gene duplication as a major force in evolution in JOURNAL OF GENETICS
  • 2010-05-02. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation in NATURE BIOTECHNOLOGY
  • 2011-08-04. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome in BMC BIOINFORMATICS
  • 2011-05-15. Full-length transcriptome assembly from RNA-Seq data without a reference genome in NATURE BIOTECHNOLOGY
  • 2008-08. Horizontal gene transfer in eukaryotic evolution in NATURE REVIEWS GENETICS
  • 2017-02-13. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species in GENOME BIOLOGY
  • 2015-07-17. Horizontal gene transfer: building the web of life in NATURE REVIEWS GENETICS
  • 2016-12-21. A novel single-stranded RNA virus in Nesidiocoris tenuis in ARCHIVES OF VIROLOGY
  • 2003-12-17. Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study in JOURNAL OF COMPARATIVE PHYSIOLOGY A
  • 2016-07-08. Speciation and ecological success in dimly lit waters: horizontal gene transfer in a green sulfur bacteria bloom unveiled by metagenomic assembly in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2010-01-06. The evolution of gene duplications: classifying and distinguishing between models in NATURE REVIEWS GENETICS
  • 2009-03-04. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome in GENOME BIOLOGY
  • 2016-10-19. Functional opsin retrogene in nocturnal moth in MOBILE DNA
  • 2009-10-27. RNA-seq: from technology to biology in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2002-01-14. Selection in the evolution of gene duplications in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1

    DOI

    http://dx.doi.org/10.1186/s12862-019-1351-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111313505

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30626314


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Duplication", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Transfer, Horizontal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heteroptera", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Host Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polygalacturonase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK", 
              "id": "http://www.grid.ac/institutes/grid.9835.7", 
              "name": [
                "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China", 
                "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Pengjun", 
            "id": "sg:person.0612760625.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612760625.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.458441.8", 
              "name": [
                "Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Bin", 
            "id": "sg:person.01232451524.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232451524.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464493.8", 
              "name": [
                "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Jinyan", 
            "id": "sg:person.016041336147.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041336147.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464493.8", 
              "name": [
                "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chao", 
            "givenName": "Jiangtao", 
            "id": "sg:person.015022137625.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022137625.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK", 
              "id": "http://www.grid.ac/institutes/grid.9835.7", 
              "name": [
                "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Donkersley", 
            "givenName": "Philip", 
            "id": "sg:person.01241750500.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241750500.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK", 
              "id": "http://www.grid.ac/institutes/grid.9835.7", 
              "name": [
                "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holdbrook", 
            "givenName": "Robert", 
            "id": "sg:person.010133645347.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133645347.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464356.6", 
              "name": [
                "State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yanhui", 
            "id": "sg:person.01126433245.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126433245.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00359-003-0478-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031449537", 
              "https://doi.org/10.1007/s00359-003-0478-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2016.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027694582", 
              "https://doi.org/10.1038/ismej.2016.93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021902674", 
              "https://doi.org/10.1186/1471-2105-12-323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007956667", 
              "https://doi.org/10.1038/nrg3962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015803168", 
              "https://doi.org/10.1038/nbt.1883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1145-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083720069", 
              "https://doi.org/10.1186/s13059-016-1145-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12041-013-0212-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001446932", 
              "https://doi.org/10.1007/s12041-013-0212-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-009-0180-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025064165", 
              "https://doi.org/10.1007/s00018-009-0180-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031035095", 
              "https://doi.org/10.1038/nbt.1621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002840749", 
              "https://doi.org/10.1038/nrg2386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00705-016-3195-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051995045", 
              "https://doi.org/10.1007/s00705-016-3195-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13100-016-0074-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040434976", 
              "https://doi.org/10.1186/s13100-016-0074-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2002-3-2-research0008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027965540", 
              "https://doi.org/10.1186/gb-2002-3-2-research0008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045071161", 
              "https://doi.org/10.1038/nrg2689"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-09", 
        "datePublishedReg": "2019-01-09", 
        "description": "BackgroudHorizontal gene transfer and gene duplication are two major mechanisms contributing to the evolutionary adaptation of organisms. Previously, polygalacturonase genes (PGs) were independently horizontally transferred and underwent multiple duplications in insects (e.g., mirid bugs and beetles). Here, we chose three phytozoophagous mirid bugs (Adelphocoris suturalis, A. fasciaticollis, A. lineolatus) and one zoophytophagous mirid bug (Nesidiocoris tenuis) to detect whether the duplication, molecular evolution, and expression levels of PGs were related to host range expansion in mirid bugs.ResultsBy RNA-seq, we reported 30, 20, 19 and 8 PGs in A. suturalis, A. fasciaticollis, A. lineolatus and N. tenuis, respectively. Interestingly, the number of PGs was significantly positive correlation to the number of host plants (P\u00a0=\u20090.0339) in mirid bugs. Most PGs (>\u200917) were highly expressed in the three phytozoophagous mirid bugs, while only one PG was relatively highly expressed in the zoophytophagous mirid bug. Natural selection analysis clearly showed that a significant relaxation of selection pressure acted on the PGs in zoophytophagous mirid bugs (K\u2009=\u20090.546, P\u00a0=\u20090.0158) rather than in phytozoophagous mirid bugs (K\u2009=\u20091, P\u00a0=\u20090.92), suggesting a function constraint of PGs in phytozoophagous mirid bugs.ConclusionTaken together with gene duplication, molecular evolution, and expression levels, our results suggest that PGs are more strictly required by phytozoophagous than by zoophytophagous mirid bugs and that the duplication of PGs is associated with the expansion of host plant ranges in mirid bugs.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12862-019-1351-1", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8194423", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8182118", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7022530", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024249", 
            "issn": [
              "2730-7182"
            ], 
            "name": "BMC Ecology and Evolution", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "host range expansion", 
          "polygalacturonase gene", 
          "mirid bugs", 
          "gene duplication", 
          "molecular evolution", 
          "range expansion", 
          "host plant range", 
          "expression levels", 
          "natural selection analysis", 
          "A. suturalis", 
          "host plants", 
          "plant range", 
          "A. fasciaticollis", 
          "N. tenuis", 
          "evolutionary adaptation", 
          "multiple duplications", 
          "RNA-seq", 
          "A. lineolatus", 
          "selection pressure", 
          "selection analysis", 
          "gene transfer", 
          "duplication", 
          "genes", 
          "major mechanism", 
          "bugs", 
          "insects", 
          "suturalis", 
          "lineolatus", 
          "organisms", 
          "tenuis", 
          "plants", 
          "evolution", 
          "expression", 
          "adaptation", 
          "ConclusionTaken", 
          "expansion", 
          "mechanism", 
          "positive correlation", 
          "levels", 
          "number", 
          "analysis", 
          "transfer", 
          "range", 
          "results", 
          "correlation", 
          "constraints", 
          "function constraints", 
          "pressure", 
          "significant relaxation", 
          "relaxation"
        ], 
        "name": "Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs", 
        "pagination": "12", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111313505"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12862-019-1351-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30626314"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12862-019-1351-1", 
          "https://app.dimensions.ai/details/publication/pub.1111313505"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_825.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12862-019-1351-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    284 TRIPLES      21 PREDICATES      104 URIs      81 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12862-019-1351-1 schema:about N2cd3bf3243124a88b8c08ffb3779228e
    2 N3510a7375b7045b69d9f03f33a24043f
    3 N5c59063cff6e483aa8d40bc7d04a4e16
    4 N6a16fa6363b44cbbb8b90739a085b95a
    5 N7a26bfb75d70491dadd85454657220ac
    6 N7c2e78cdd83e45a8860bee3c0105cef2
    7 N8ceca1c3367c40fe86f8a1d9c5ef335f
    8 Na5d43314e833422289d9168eb13e4c44
    9 Nad37835d9cc44b4e8be84988977d6aa8
    10 Nb493afe71ed6436c965906c5cc2f3153
    11 Nd265d7b75c1c44b2b64f2e6c0079672c
    12 Nd970d68ee473487ab8ea71950d31343d
    13 Nea11589dc123466ba11f85bf848e1420
    14 Nef7b910b0abb4755a8dc5056d925b9d4
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author Nd52d1ec8798d42e6ac46d87b56732d53
    18 schema:citation sg:pub.10.1007/s00018-009-0180-6
    19 sg:pub.10.1007/s00359-003-0478-z
    20 sg:pub.10.1007/s00705-016-3195-y
    21 sg:pub.10.1007/s12041-013-0212-8
    22 sg:pub.10.1038/ismej.2016.93
    23 sg:pub.10.1038/nbt.1621
    24 sg:pub.10.1038/nbt.1883
    25 sg:pub.10.1038/nrg2386
    26 sg:pub.10.1038/nrg2689
    27 sg:pub.10.1038/nrg3962
    28 sg:pub.10.1186/1471-2105-12-323
    29 sg:pub.10.1186/gb-2002-3-2-research0008
    30 sg:pub.10.1186/gb-2009-10-3-r25
    31 sg:pub.10.1186/s13059-016-1145-3
    32 sg:pub.10.1186/s13100-016-0074-8
    33 schema:datePublished 2019-01-09
    34 schema:datePublishedReg 2019-01-09
    35 schema:description BackgroudHorizontal gene transfer and gene duplication are two major mechanisms contributing to the evolutionary adaptation of organisms. Previously, polygalacturonase genes (PGs) were independently horizontally transferred and underwent multiple duplications in insects (e.g., mirid bugs and beetles). Here, we chose three phytozoophagous mirid bugs (Adelphocoris suturalis, A. fasciaticollis, A. lineolatus) and one zoophytophagous mirid bug (Nesidiocoris tenuis) to detect whether the duplication, molecular evolution, and expression levels of PGs were related to host range expansion in mirid bugs.ResultsBy RNA-seq, we reported 30, 20, 19 and 8 PGs in A. suturalis, A. fasciaticollis, A. lineolatus and N. tenuis, respectively. Interestingly, the number of PGs was significantly positive correlation to the number of host plants (P = 0.0339) in mirid bugs. Most PGs (> 17) were highly expressed in the three phytozoophagous mirid bugs, while only one PG was relatively highly expressed in the zoophytophagous mirid bug. Natural selection analysis clearly showed that a significant relaxation of selection pressure acted on the PGs in zoophytophagous mirid bugs (K = 0.546, P = 0.0158) rather than in phytozoophagous mirid bugs (K = 1, P = 0.92), suggesting a function constraint of PGs in phytozoophagous mirid bugs.ConclusionTaken together with gene duplication, molecular evolution, and expression levels, our results suggest that PGs are more strictly required by phytozoophagous than by zoophytophagous mirid bugs and that the duplication of PGs is associated with the expansion of host plant ranges in mirid bugs.
    36 schema:genre article
    37 schema:isAccessibleForFree true
    38 schema:isPartOf Nc28de2c5b93640a9957e2eb5163ba0b2
    39 Nfa365b24249e47c09028fcb095e6e2d2
    40 sg:journal.1024249
    41 schema:keywords A. fasciaticollis
    42 A. lineolatus
    43 A. suturalis
    44 ConclusionTaken
    45 N. tenuis
    46 RNA-seq
    47 adaptation
    48 analysis
    49 bugs
    50 constraints
    51 correlation
    52 duplication
    53 evolution
    54 evolutionary adaptation
    55 expansion
    56 expression
    57 expression levels
    58 function constraints
    59 gene duplication
    60 gene transfer
    61 genes
    62 host plant range
    63 host plants
    64 host range expansion
    65 insects
    66 levels
    67 lineolatus
    68 major mechanism
    69 mechanism
    70 mirid bugs
    71 molecular evolution
    72 multiple duplications
    73 natural selection analysis
    74 number
    75 organisms
    76 plant range
    77 plants
    78 polygalacturonase gene
    79 positive correlation
    80 pressure
    81 range
    82 range expansion
    83 relaxation
    84 results
    85 selection analysis
    86 selection pressure
    87 significant relaxation
    88 suturalis
    89 tenuis
    90 transfer
    91 schema:name Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs
    92 schema:pagination 12
    93 schema:productId N2b93d079673647df9cad4b34b57c891a
    94 N4370a2039f7e4e84b78fb3f047d7988f
    95 N5439be34323141b5b8efc386f3a604d9
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111313505
    97 https://doi.org/10.1186/s12862-019-1351-1
    98 schema:sdDatePublished 2022-10-01T06:46
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher Ndea87490087a486495e26d2e8148335c
    101 schema:url https://doi.org/10.1186/s12862-019-1351-1
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N291ea78474a54f55b683e169d83d1d5b rdf:first sg:person.01232451524.77
    106 rdf:rest N42b2736d5fc94df2a6dcd735ad5929d8
    107 N2b93d079673647df9cad4b34b57c891a schema:name pubmed_id
    108 schema:value 30626314
    109 rdf:type schema:PropertyValue
    110 N2cd3bf3243124a88b8c08ffb3779228e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Phylogeny
    112 rdf:type schema:DefinedTerm
    113 N3510a7375b7045b69d9f03f33a24043f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Selection, Genetic
    115 rdf:type schema:DefinedTerm
    116 N42b2736d5fc94df2a6dcd735ad5929d8 rdf:first sg:person.016041336147.22
    117 rdf:rest N5586af22c3a848368214136b30829e6c
    118 N4370a2039f7e4e84b78fb3f047d7988f schema:name dimensions_id
    119 schema:value pub.1111313505
    120 rdf:type schema:PropertyValue
    121 N5439be34323141b5b8efc386f3a604d9 schema:name doi
    122 schema:value 10.1186/s12862-019-1351-1
    123 rdf:type schema:PropertyValue
    124 N5586af22c3a848368214136b30829e6c rdf:first sg:person.015022137625.02
    125 rdf:rest Naed54e07f1634d189afb37f2e758f150
    126 N5c59063cff6e483aa8d40bc7d04a4e16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Polygalacturonase
    128 rdf:type schema:DefinedTerm
    129 N6a16fa6363b44cbbb8b90739a085b95a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Sequence Alignment
    131 rdf:type schema:DefinedTerm
    132 N7a26bfb75d70491dadd85454657220ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Heteroptera
    134 rdf:type schema:DefinedTerm
    135 N7c2e78cdd83e45a8860bee3c0105cef2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Gene Duplication
    137 rdf:type schema:DefinedTerm
    138 N8ceca1c3367c40fe86f8a1d9c5ef335f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Species Specificity
    140 rdf:type schema:DefinedTerm
    141 N9d9a51a0d68943b8b309bd934c8d0e58 rdf:first sg:person.010133645347.59
    142 rdf:rest Nd7c69d633d844d52be402508ca79d440
    143 Na5d43314e833422289d9168eb13e4c44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Evolution, Molecular
    145 rdf:type schema:DefinedTerm
    146 Nad37835d9cc44b4e8be84988977d6aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Animals
    148 rdf:type schema:DefinedTerm
    149 Naed54e07f1634d189afb37f2e758f150 rdf:first sg:person.01241750500.35
    150 rdf:rest N9d9a51a0d68943b8b309bd934c8d0e58
    151 Nb493afe71ed6436c965906c5cc2f3153 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Gene Expression Profiling
    153 rdf:type schema:DefinedTerm
    154 Nc28de2c5b93640a9957e2eb5163ba0b2 schema:issueNumber 1
    155 rdf:type schema:PublicationIssue
    156 Nd265d7b75c1c44b2b64f2e6c0079672c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Gene Transfer, Horizontal
    158 rdf:type schema:DefinedTerm
    159 Nd52d1ec8798d42e6ac46d87b56732d53 rdf:first sg:person.0612760625.11
    160 rdf:rest N291ea78474a54f55b683e169d83d1d5b
    161 Nd7c69d633d844d52be402508ca79d440 rdf:first sg:person.01126433245.35
    162 rdf:rest rdf:nil
    163 Nd970d68ee473487ab8ea71950d31343d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Gene Expression Regulation
    165 rdf:type schema:DefinedTerm
    166 Ndea87490087a486495e26d2e8148335c schema:name Springer Nature - SN SciGraph project
    167 rdf:type schema:Organization
    168 Nea11589dc123466ba11f85bf848e1420 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Genes, Insect
    170 rdf:type schema:DefinedTerm
    171 Nef7b910b0abb4755a8dc5056d925b9d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Host Specificity
    173 rdf:type schema:DefinedTerm
    174 Nfa365b24249e47c09028fcb095e6e2d2 schema:volumeNumber 19
    175 rdf:type schema:PublicationVolume
    176 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Biological Sciences
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Genetics
    181 rdf:type schema:DefinedTerm
    182 sg:grant.7022530 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-019-1351-1
    183 rdf:type schema:MonetaryGrant
    184 sg:grant.8182118 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-019-1351-1
    185 rdf:type schema:MonetaryGrant
    186 sg:grant.8194423 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-019-1351-1
    187 rdf:type schema:MonetaryGrant
    188 sg:journal.1024249 schema:issn 2730-7182
    189 schema:name BMC Ecology and Evolution
    190 schema:publisher Springer Nature
    191 rdf:type schema:Periodical
    192 sg:person.010133645347.59 schema:affiliation grid-institutes:grid.9835.7
    193 schema:familyName Holdbrook
    194 schema:givenName Robert
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133645347.59
    196 rdf:type schema:Person
    197 sg:person.01126433245.35 schema:affiliation grid-institutes:grid.464356.6
    198 schema:familyName Lu
    199 schema:givenName Yanhui
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126433245.35
    201 rdf:type schema:Person
    202 sg:person.01232451524.77 schema:affiliation grid-institutes:grid.458441.8
    203 schema:familyName Lu
    204 schema:givenName Bin
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232451524.77
    206 rdf:type schema:Person
    207 sg:person.01241750500.35 schema:affiliation grid-institutes:grid.9835.7
    208 schema:familyName Donkersley
    209 schema:givenName Philip
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241750500.35
    211 rdf:type schema:Person
    212 sg:person.015022137625.02 schema:affiliation grid-institutes:grid.464493.8
    213 schema:familyName Chao
    214 schema:givenName Jiangtao
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022137625.02
    216 rdf:type schema:Person
    217 sg:person.016041336147.22 schema:affiliation grid-institutes:grid.464493.8
    218 schema:familyName Liu
    219 schema:givenName Jinyan
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041336147.22
    221 rdf:type schema:Person
    222 sg:person.0612760625.11 schema:affiliation grid-institutes:grid.9835.7
    223 schema:familyName Xu
    224 schema:givenName Pengjun
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612760625.11
    226 rdf:type schema:Person
    227 sg:pub.10.1007/s00018-009-0180-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025064165
    228 https://doi.org/10.1007/s00018-009-0180-6
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00359-003-0478-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031449537
    231 https://doi.org/10.1007/s00359-003-0478-z
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00705-016-3195-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051995045
    234 https://doi.org/10.1007/s00705-016-3195-y
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s12041-013-0212-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001446932
    237 https://doi.org/10.1007/s12041-013-0212-8
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ismej.2016.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027694582
    240 https://doi.org/10.1038/ismej.2016.93
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
    243 https://doi.org/10.1038/nbt.1621
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nbt.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803168
    246 https://doi.org/10.1038/nbt.1883
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrg2386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002840749
    249 https://doi.org/10.1038/nrg2386
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nrg2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045071161
    252 https://doi.org/10.1038/nrg2689
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nrg3962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007956667
    255 https://doi.org/10.1038/nrg3962
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/1471-2105-12-323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021902674
    258 https://doi.org/10.1186/1471-2105-12-323
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/gb-2002-3-2-research0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027965540
    261 https://doi.org/10.1186/gb-2002-3-2-research0008
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    264 https://doi.org/10.1186/gb-2009-10-3-r25
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/s13059-016-1145-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083720069
    267 https://doi.org/10.1186/s13059-016-1145-3
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/s13100-016-0074-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040434976
    270 https://doi.org/10.1186/s13100-016-0074-8
    271 rdf:type schema:CreativeWork
    272 grid-institutes:grid.458441.8 schema:alternateName Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, People’s Republic of China
    273 schema:name Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, People’s Republic of China
    274 rdf:type schema:Organization
    275 grid-institutes:grid.464356.6 schema:alternateName State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, People’s Republic of China
    276 schema:name State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, People’s Republic of China
    277 rdf:type schema:Organization
    278 grid-institutes:grid.464493.8 schema:alternateName Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People’s Republic of China
    279 schema:name Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People’s Republic of China
    280 rdf:type schema:Organization
    281 grid-institutes:grid.9835.7 schema:alternateName Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK
    282 schema:name Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK
    283 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People’s Republic of China
    284 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...