Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-09

AUTHORS

Pengjun Xu, Bin Lu, Jinyan Liu, Jiangtao Chao, Philip Donkersley, Robert Holdbrook, Yanhui Lu

ABSTRACT

BackgroudHorizontal gene transfer and gene duplication are two major mechanisms contributing to the evolutionary adaptation of organisms. Previously, polygalacturonase genes (PGs) were independently horizontally transferred and underwent multiple duplications in insects (e.g., mirid bugs and beetles). Here, we chose three phytozoophagous mirid bugs (Adelphocoris suturalis, A. fasciaticollis, A. lineolatus) and one zoophytophagous mirid bug (Nesidiocoris tenuis) to detect whether the duplication, molecular evolution, and expression levels of PGs were related to host range expansion in mirid bugs.ResultsBy RNA-seq, we reported 30, 20, 19 and 8 PGs in A. suturalis, A. fasciaticollis, A. lineolatus and N. tenuis, respectively. Interestingly, the number of PGs was significantly positive correlation to the number of host plants (P = 0.0339) in mirid bugs. Most PGs (> 17) were highly expressed in the three phytozoophagous mirid bugs, while only one PG was relatively highly expressed in the zoophytophagous mirid bug. Natural selection analysis clearly showed that a significant relaxation of selection pressure acted on the PGs in zoophytophagous mirid bugs (K = 0.546, P = 0.0158) rather than in phytozoophagous mirid bugs (K = 1, P = 0.92), suggesting a function constraint of PGs in phytozoophagous mirid bugs.ConclusionTaken together with gene duplication, molecular evolution, and expression levels, our results suggest that PGs are more strictly required by phytozoophagous than by zoophytophagous mirid bugs and that the duplication of PGs is associated with the expansion of host plant ranges in mirid bugs. More... »

PAGES

12

References to SciGraph publications

  • 2013-03-20. Gene duplication as a major force in evolution in JOURNAL OF GENETICS
  • 2010-05-02. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation in NATURE BIOTECHNOLOGY
  • 2011-08-04. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome in BMC BIOINFORMATICS
  • 2011-05-15. Full-length transcriptome assembly from RNA-Seq data without a reference genome in NATURE BIOTECHNOLOGY
  • 2008-08. Horizontal gene transfer in eukaryotic evolution in NATURE REVIEWS GENETICS
  • 2017-02-13. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species in GENOME BIOLOGY
  • 2015-07-17. Horizontal gene transfer: building the web of life in NATURE REVIEWS GENETICS
  • 2016-12-21. A novel single-stranded RNA virus in Nesidiocoris tenuis in ARCHIVES OF VIROLOGY
  • 2003-12-17. Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study in JOURNAL OF COMPARATIVE PHYSIOLOGY A
  • 2016-07-08. Speciation and ecological success in dimly lit waters: horizontal gene transfer in a green sulfur bacteria bloom unveiled by metagenomic assembly in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2010-01-06. The evolution of gene duplications: classifying and distinguishing between models in NATURE REVIEWS GENETICS
  • 2009-03-04. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome in GENOME BIOLOGY
  • 2016-10-19. Functional opsin retrogene in nocturnal moth in MOBILE DNA
  • 2009-10-27. RNA-seq: from technology to biology in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2002-01-14. Selection in the evolution of gene duplications in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1

    DOI

    http://dx.doi.org/10.1186/s12862-019-1351-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111313505

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30626314


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Duplication", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Transfer, Horizontal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heteroptera", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Host Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polygalacturonase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK", 
              "id": "http://www.grid.ac/institutes/grid.9835.7", 
              "name": [
                "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China", 
                "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Pengjun", 
            "id": "sg:person.0612760625.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612760625.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.458441.8", 
              "name": [
                "Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Bin", 
            "id": "sg:person.01232451524.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232451524.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464493.8", 
              "name": [
                "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Jinyan", 
            "id": "sg:person.016041336147.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041336147.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464493.8", 
              "name": [
                "Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chao", 
            "givenName": "Jiangtao", 
            "id": "sg:person.015022137625.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022137625.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK", 
              "id": "http://www.grid.ac/institutes/grid.9835.7", 
              "name": [
                "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Donkersley", 
            "givenName": "Philip", 
            "id": "sg:person.01241750500.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241750500.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK", 
              "id": "http://www.grid.ac/institutes/grid.9835.7", 
              "name": [
                "Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holdbrook", 
            "givenName": "Robert", 
            "id": "sg:person.010133645347.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133645347.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464356.6", 
              "name": [
                "State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yanhui", 
            "id": "sg:person.01126433245.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126433245.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00018-009-0180-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025064165", 
              "https://doi.org/10.1007/s00018-009-0180-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015803168", 
              "https://doi.org/10.1038/nbt.1883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031035095", 
              "https://doi.org/10.1038/nbt.1621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045071161", 
              "https://doi.org/10.1038/nrg2689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13100-016-0074-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040434976", 
              "https://doi.org/10.1186/s13100-016-0074-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00359-003-0478-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031449537", 
              "https://doi.org/10.1007/s00359-003-0478-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1145-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083720069", 
              "https://doi.org/10.1186/s13059-016-1145-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007956667", 
              "https://doi.org/10.1038/nrg3962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2002-3-2-research0008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027965540", 
              "https://doi.org/10.1186/gb-2002-3-2-research0008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00705-016-3195-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051995045", 
              "https://doi.org/10.1007/s00705-016-3195-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2016.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027694582", 
              "https://doi.org/10.1038/ismej.2016.93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002840749", 
              "https://doi.org/10.1038/nrg2386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12041-013-0212-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001446932", 
              "https://doi.org/10.1007/s12041-013-0212-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021902674", 
              "https://doi.org/10.1186/1471-2105-12-323"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-09", 
        "datePublishedReg": "2019-01-09", 
        "description": "BackgroudHorizontal gene transfer and gene duplication are two major mechanisms contributing to the evolutionary adaptation of organisms. Previously, polygalacturonase genes (PGs) were independently horizontally transferred and underwent multiple duplications in insects (e.g., mirid bugs and beetles). Here, we chose three phytozoophagous mirid bugs (Adelphocoris suturalis, A. fasciaticollis, A. lineolatus) and one zoophytophagous mirid bug (Nesidiocoris tenuis) to detect whether the duplication, molecular evolution, and expression levels of PGs were related to host range expansion in mirid bugs.ResultsBy RNA-seq, we reported 30, 20, 19 and 8 PGs in A. suturalis, A. fasciaticollis, A. lineolatus and N. tenuis, respectively. Interestingly, the number of PGs was significantly positive correlation to the number of host plants (P\u00a0=\u20090.0339) in mirid bugs. Most PGs (>\u200917) were highly expressed in the three phytozoophagous mirid bugs, while only one PG was relatively highly expressed in the zoophytophagous mirid bug. Natural selection analysis clearly showed that a significant relaxation of selection pressure acted on the PGs in zoophytophagous mirid bugs (K\u2009=\u20090.546, P\u00a0=\u20090.0158) rather than in phytozoophagous mirid bugs (K\u2009=\u20091, P\u00a0=\u20090.92), suggesting a function constraint of PGs in phytozoophagous mirid bugs.ConclusionTaken together with gene duplication, molecular evolution, and expression levels, our results suggest that PGs are more strictly required by phytozoophagous than by zoophytophagous mirid bugs and that the duplication of PGs is associated with the expansion of host plant ranges in mirid bugs.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12862-019-1351-1", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8194423", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8182118", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7022530", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024249", 
            "issn": [
              "2730-7182"
            ], 
            "name": "BMC Ecology and Evolution", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "host range expansion", 
          "polygalacturonase gene", 
          "mirid bugs", 
          "gene duplication", 
          "molecular evolution", 
          "range expansion", 
          "host plant range", 
          "expression levels", 
          "natural selection analysis", 
          "A. suturalis", 
          "host plants", 
          "plant range", 
          "A. fasciaticollis", 
          "N. tenuis", 
          "evolutionary adaptation", 
          "multiple duplications", 
          "RNA-seq", 
          "A. lineolatus", 
          "selection pressure", 
          "selection analysis", 
          "gene transfer", 
          "duplication", 
          "genes", 
          "major mechanism", 
          "bugs", 
          "insects", 
          "suturalis", 
          "lineolatus", 
          "organisms", 
          "tenuis", 
          "plants", 
          "evolution", 
          "expression", 
          "adaptation", 
          "ConclusionTaken", 
          "expansion", 
          "mechanism", 
          "positive correlation", 
          "levels", 
          "number", 
          "analysis", 
          "transfer", 
          "range", 
          "results", 
          "correlation", 
          "constraints", 
          "function constraints", 
          "pressure", 
          "significant relaxation", 
          "relaxation"
        ], 
        "name": "Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs", 
        "pagination": "12", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111313505"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12862-019-1351-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30626314"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12862-019-1351-1", 
          "https://app.dimensions.ai/details/publication/pub.1111313505"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_812.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12862-019-1351-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-019-1351-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    284 TRIPLES      21 PREDICATES      104 URIs      81 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12862-019-1351-1 schema:about N1826579b9082417f97cc09c46d90d08d
    2 N33376725f02c4c8bb54fd18705ecc04f
    3 N39a540bb55ca48e4a969653362637ffb
    4 N5051dde3208f4bcb93121a64e1f8e8a1
    5 N5991c980c4f3444681edede3e6485afc
    6 N6d3f8ec2a0b349738958e9ff900aa97a
    7 N85db9054d05949f68e41afd7c7b04518
    8 N931297441aa84108a32cc6bdf74b6bae
    9 N99cdffd4a1ef4e5baa85e8c7a4c3c456
    10 N9d8c4c4d58bb4637beb9126a10aa7864
    11 Na0376f72de42410ab4744bb4767756b8
    12 Ne8d6579cf3c8432299f8533ca3e0ff0b
    13 Ne8ee22317511415fa027120bb5a09dba
    14 Nf190e5589e7c4028a41f189fd8e3e5e6
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author Nea1948bb0ff74d6396f8992ee7acecee
    18 schema:citation sg:pub.10.1007/s00018-009-0180-6
    19 sg:pub.10.1007/s00359-003-0478-z
    20 sg:pub.10.1007/s00705-016-3195-y
    21 sg:pub.10.1007/s12041-013-0212-8
    22 sg:pub.10.1038/ismej.2016.93
    23 sg:pub.10.1038/nbt.1621
    24 sg:pub.10.1038/nbt.1883
    25 sg:pub.10.1038/nrg2386
    26 sg:pub.10.1038/nrg2689
    27 sg:pub.10.1038/nrg3962
    28 sg:pub.10.1186/1471-2105-12-323
    29 sg:pub.10.1186/gb-2002-3-2-research0008
    30 sg:pub.10.1186/gb-2009-10-3-r25
    31 sg:pub.10.1186/s13059-016-1145-3
    32 sg:pub.10.1186/s13100-016-0074-8
    33 schema:datePublished 2019-01-09
    34 schema:datePublishedReg 2019-01-09
    35 schema:description BackgroudHorizontal gene transfer and gene duplication are two major mechanisms contributing to the evolutionary adaptation of organisms. Previously, polygalacturonase genes (PGs) were independently horizontally transferred and underwent multiple duplications in insects (e.g., mirid bugs and beetles). Here, we chose three phytozoophagous mirid bugs (Adelphocoris suturalis, A. fasciaticollis, A. lineolatus) and one zoophytophagous mirid bug (Nesidiocoris tenuis) to detect whether the duplication, molecular evolution, and expression levels of PGs were related to host range expansion in mirid bugs.ResultsBy RNA-seq, we reported 30, 20, 19 and 8 PGs in A. suturalis, A. fasciaticollis, A. lineolatus and N. tenuis, respectively. Interestingly, the number of PGs was significantly positive correlation to the number of host plants (P = 0.0339) in mirid bugs. Most PGs (> 17) were highly expressed in the three phytozoophagous mirid bugs, while only one PG was relatively highly expressed in the zoophytophagous mirid bug. Natural selection analysis clearly showed that a significant relaxation of selection pressure acted on the PGs in zoophytophagous mirid bugs (K = 0.546, P = 0.0158) rather than in phytozoophagous mirid bugs (K = 1, P = 0.92), suggesting a function constraint of PGs in phytozoophagous mirid bugs.ConclusionTaken together with gene duplication, molecular evolution, and expression levels, our results suggest that PGs are more strictly required by phytozoophagous than by zoophytophagous mirid bugs and that the duplication of PGs is associated with the expansion of host plant ranges in mirid bugs.
    36 schema:genre article
    37 schema:isAccessibleForFree true
    38 schema:isPartOf Nc0158fbe7e434289a655ba61a3b6ac9e
    39 Neacce78863394641bc9df9d45bc8ef74
    40 sg:journal.1024249
    41 schema:keywords A. fasciaticollis
    42 A. lineolatus
    43 A. suturalis
    44 ConclusionTaken
    45 N. tenuis
    46 RNA-seq
    47 adaptation
    48 analysis
    49 bugs
    50 constraints
    51 correlation
    52 duplication
    53 evolution
    54 evolutionary adaptation
    55 expansion
    56 expression
    57 expression levels
    58 function constraints
    59 gene duplication
    60 gene transfer
    61 genes
    62 host plant range
    63 host plants
    64 host range expansion
    65 insects
    66 levels
    67 lineolatus
    68 major mechanism
    69 mechanism
    70 mirid bugs
    71 molecular evolution
    72 multiple duplications
    73 natural selection analysis
    74 number
    75 organisms
    76 plant range
    77 plants
    78 polygalacturonase gene
    79 positive correlation
    80 pressure
    81 range
    82 range expansion
    83 relaxation
    84 results
    85 selection analysis
    86 selection pressure
    87 significant relaxation
    88 suturalis
    89 tenuis
    90 transfer
    91 schema:name Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs
    92 schema:pagination 12
    93 schema:productId N0e5c2897324f405db92e36812de3ee3b
    94 N88053e3e7b4640c2a349a9ec67651a07
    95 N91434954831f477b870cf6ddf61ac05a
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111313505
    97 https://doi.org/10.1186/s12862-019-1351-1
    98 schema:sdDatePublished 2022-12-01T06:40
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher Nae3a9d2fb82244dea742f232fc9f3cbb
    101 schema:url https://doi.org/10.1186/s12862-019-1351-1
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N03c4527d93364b8b976c186a5ea06d94 rdf:first sg:person.015022137625.02
    106 rdf:rest N478df27656d1443088913d68aa1702c7
    107 N0e5c2897324f405db92e36812de3ee3b schema:name doi
    108 schema:value 10.1186/s12862-019-1351-1
    109 rdf:type schema:PropertyValue
    110 N1826579b9082417f97cc09c46d90d08d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Polygalacturonase
    112 rdf:type schema:DefinedTerm
    113 N323a1d87ff9f4104a82a26b6f9af6f9c rdf:first sg:person.01126433245.35
    114 rdf:rest rdf:nil
    115 N33376725f02c4c8bb54fd18705ecc04f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Host Specificity
    117 rdf:type schema:DefinedTerm
    118 N39a540bb55ca48e4a969653362637ffb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Genes, Insect
    120 rdf:type schema:DefinedTerm
    121 N478df27656d1443088913d68aa1702c7 rdf:first sg:person.01241750500.35
    122 rdf:rest N5035e4221c02479f96cd0958634dec6d
    123 N5035e4221c02479f96cd0958634dec6d rdf:first sg:person.010133645347.59
    124 rdf:rest N323a1d87ff9f4104a82a26b6f9af6f9c
    125 N5051dde3208f4bcb93121a64e1f8e8a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Gene Transfer, Horizontal
    127 rdf:type schema:DefinedTerm
    128 N5991c980c4f3444681edede3e6485afc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Evolution, Molecular
    130 rdf:type schema:DefinedTerm
    131 N6d3f8ec2a0b349738958e9ff900aa97a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Species Specificity
    133 rdf:type schema:DefinedTerm
    134 N7ad492739d7d45c49a75f9a4e6697d63 rdf:first sg:person.016041336147.22
    135 rdf:rest N03c4527d93364b8b976c186a5ea06d94
    136 N7cf65a88366349b8bbe33c9076430bfa rdf:first sg:person.01232451524.77
    137 rdf:rest N7ad492739d7d45c49a75f9a4e6697d63
    138 N85db9054d05949f68e41afd7c7b04518 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Phylogeny
    140 rdf:type schema:DefinedTerm
    141 N88053e3e7b4640c2a349a9ec67651a07 schema:name dimensions_id
    142 schema:value pub.1111313505
    143 rdf:type schema:PropertyValue
    144 N91434954831f477b870cf6ddf61ac05a schema:name pubmed_id
    145 schema:value 30626314
    146 rdf:type schema:PropertyValue
    147 N931297441aa84108a32cc6bdf74b6bae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Sequence Alignment
    149 rdf:type schema:DefinedTerm
    150 N99cdffd4a1ef4e5baa85e8c7a4c3c456 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Gene Expression Profiling
    152 rdf:type schema:DefinedTerm
    153 N9d8c4c4d58bb4637beb9126a10aa7864 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Gene Duplication
    155 rdf:type schema:DefinedTerm
    156 Na0376f72de42410ab4744bb4767756b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Selection, Genetic
    158 rdf:type schema:DefinedTerm
    159 Nae3a9d2fb82244dea742f232fc9f3cbb schema:name Springer Nature - SN SciGraph project
    160 rdf:type schema:Organization
    161 Nc0158fbe7e434289a655ba61a3b6ac9e schema:volumeNumber 19
    162 rdf:type schema:PublicationVolume
    163 Ne8d6579cf3c8432299f8533ca3e0ff0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Animals
    165 rdf:type schema:DefinedTerm
    166 Ne8ee22317511415fa027120bb5a09dba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Gene Expression Regulation
    168 rdf:type schema:DefinedTerm
    169 Nea1948bb0ff74d6396f8992ee7acecee rdf:first sg:person.0612760625.11
    170 rdf:rest N7cf65a88366349b8bbe33c9076430bfa
    171 Neacce78863394641bc9df9d45bc8ef74 schema:issueNumber 1
    172 rdf:type schema:PublicationIssue
    173 Nf190e5589e7c4028a41f189fd8e3e5e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Heteroptera
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Biological Sciences
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Genetics
    181 rdf:type schema:DefinedTerm
    182 sg:grant.7022530 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-019-1351-1
    183 rdf:type schema:MonetaryGrant
    184 sg:grant.8182118 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-019-1351-1
    185 rdf:type schema:MonetaryGrant
    186 sg:grant.8194423 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-019-1351-1
    187 rdf:type schema:MonetaryGrant
    188 sg:journal.1024249 schema:issn 2730-7182
    189 schema:name BMC Ecology and Evolution
    190 schema:publisher Springer Nature
    191 rdf:type schema:Periodical
    192 sg:person.010133645347.59 schema:affiliation grid-institutes:grid.9835.7
    193 schema:familyName Holdbrook
    194 schema:givenName Robert
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133645347.59
    196 rdf:type schema:Person
    197 sg:person.01126433245.35 schema:affiliation grid-institutes:grid.464356.6
    198 schema:familyName Lu
    199 schema:givenName Yanhui
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126433245.35
    201 rdf:type schema:Person
    202 sg:person.01232451524.77 schema:affiliation grid-institutes:grid.458441.8
    203 schema:familyName Lu
    204 schema:givenName Bin
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232451524.77
    206 rdf:type schema:Person
    207 sg:person.01241750500.35 schema:affiliation grid-institutes:grid.9835.7
    208 schema:familyName Donkersley
    209 schema:givenName Philip
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241750500.35
    211 rdf:type schema:Person
    212 sg:person.015022137625.02 schema:affiliation grid-institutes:grid.464493.8
    213 schema:familyName Chao
    214 schema:givenName Jiangtao
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022137625.02
    216 rdf:type schema:Person
    217 sg:person.016041336147.22 schema:affiliation grid-institutes:grid.464493.8
    218 schema:familyName Liu
    219 schema:givenName Jinyan
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041336147.22
    221 rdf:type schema:Person
    222 sg:person.0612760625.11 schema:affiliation grid-institutes:grid.9835.7
    223 schema:familyName Xu
    224 schema:givenName Pengjun
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612760625.11
    226 rdf:type schema:Person
    227 sg:pub.10.1007/s00018-009-0180-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025064165
    228 https://doi.org/10.1007/s00018-009-0180-6
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00359-003-0478-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031449537
    231 https://doi.org/10.1007/s00359-003-0478-z
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00705-016-3195-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051995045
    234 https://doi.org/10.1007/s00705-016-3195-y
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s12041-013-0212-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001446932
    237 https://doi.org/10.1007/s12041-013-0212-8
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ismej.2016.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027694582
    240 https://doi.org/10.1038/ismej.2016.93
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
    243 https://doi.org/10.1038/nbt.1621
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nbt.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803168
    246 https://doi.org/10.1038/nbt.1883
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrg2386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002840749
    249 https://doi.org/10.1038/nrg2386
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nrg2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045071161
    252 https://doi.org/10.1038/nrg2689
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nrg3962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007956667
    255 https://doi.org/10.1038/nrg3962
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/1471-2105-12-323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021902674
    258 https://doi.org/10.1186/1471-2105-12-323
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/gb-2002-3-2-research0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027965540
    261 https://doi.org/10.1186/gb-2002-3-2-research0008
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    264 https://doi.org/10.1186/gb-2009-10-3-r25
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/s13059-016-1145-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083720069
    267 https://doi.org/10.1186/s13059-016-1145-3
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/s13100-016-0074-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040434976
    270 https://doi.org/10.1186/s13100-016-0074-8
    271 rdf:type schema:CreativeWork
    272 grid-institutes:grid.458441.8 schema:alternateName Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, People’s Republic of China
    273 schema:name Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, People’s Republic of China
    274 rdf:type schema:Organization
    275 grid-institutes:grid.464356.6 schema:alternateName State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, People’s Republic of China
    276 schema:name State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, People’s Republic of China
    277 rdf:type schema:Organization
    278 grid-institutes:grid.464493.8 schema:alternateName Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People’s Republic of China
    279 schema:name Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People’s Republic of China
    280 rdf:type schema:Organization
    281 grid-institutes:grid.9835.7 schema:alternateName Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK
    282 schema:name Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK
    283 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 266101, Qingdao, People’s Republic of China
    284 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...