Improved inference of site-specific positive selection under a generalized parametric codon model when there are multinucleotide mutations and multiple nonsynonymous ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Katherine A. Dunn, Toby Kenney, Hong Gu, Joseph P. Bielawski

ABSTRACT

BACKGROUND: An excess of nonsynonymous substitutions, over neutrality, is considered evidence of positive Darwinian selection. Inference for proteins often relies on estimation of the nonsynonymous to synonymous ratio (ω = dN/dS) within a codon model. However, to ease computational difficulties, ω is typically estimated assuming an idealized substitution process where (i) all nonsynonymous substitutions have the same rate (regardless of impact on organism fitness) and (ii) instantaneous double and triple (DT) nucleotide mutations have zero probability (despite evidence that they can occur). It follows that estimates of ω represent an imperfect summary of the intensity of selection, and that tests based on the ω > 1 threshold could be negatively impacted. RESULTS: We developed a general-purpose parametric (GPP) modelling framework for codons. This novel approach allows specification of all possible instantaneous codon substitutions, including multiple nonsynonymous rates (MNRs) and instantaneous DT nucleotide changes. Existing codon models are specified as special cases of the GPP model. We use GPP models to implement likelihood ratio tests for ω > 1 that accommodate MNRs and DT mutations. Through both simulation and real data analysis, we find that failure to model MNRs and DT mutations reduces power in some cases and inflates false positives in others. False positives under traditional M2a and M8 models were very sensitive to DT changes. This was exacerbated by the choice of frequency parameterization (GY vs. MG), with rates sometimes > 90% under MG. By including MNRs and DT mutations, accuracy and power was greatly improved under the GPP framework. However, we also find that over-parameterized models can perform less well, and this can contribute to degraded performance of LRTs. CONCLUSIONS: We suggest GPP models should be used alongside traditional codon models. Further, all codon models should be deployed within an experimental design that includes (i) assessing robustness to model assumptions, and (ii) investigation of non-standard behaviour of MLEs. As the goal of every analysis is to avoid false conclusions, more work is needed on model selection methods that consider both the increase in fit engendered by a model parameter and the degree to which that parameter is affected by un-modelled evolutionary processes. More... »

PAGES

22

Journal

TITLE

BMC Evolutionary Biology

ISSUE

1

VOLUME

19

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12862-018-1326-7

DOI

http://dx.doi.org/10.1186/s12862-018-1326-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111402967

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30642241


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dalhousie University", 
          "id": "https://www.grid.ac/institutes/grid.55602.34", 
          "name": [
            "Department of Biology, Dalhousie University, B3H 4J1, Halifax, Nova Scotia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunn", 
        "givenName": "Katherine A.", 
        "id": "sg:person.0654321046.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654321046.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalhousie University", 
          "id": "https://www.grid.ac/institutes/grid.55602.34", 
          "name": [
            "Department of Mathematics & Statistics, Dalhousie University, B3H 4J1, Halifax, Nova Scotia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kenney", 
        "givenName": "Toby", 
        "id": "sg:person.01304026324.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304026324.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalhousie University", 
          "id": "https://www.grid.ac/institutes/grid.55602.34", 
          "name": [
            "Department of Mathematics & Statistics, Dalhousie University, B3H 4J1, Halifax, Nova Scotia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Hong", 
        "id": "sg:person.01075711761.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075711761.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalhousie University", 
          "id": "https://www.grid.ac/institutes/grid.55602.34", 
          "name": [
            "Department of Biology, Dalhousie University, B3H 4J1, Halifax, Nova Scotia, Canada", 
            "Department of Mathematics & Statistics, Dalhousie University, B3H 4J1, Halifax, Nova Scotia, Canada", 
            "Centre Comparative Genomics and Evolutionary Bioinformatics (CGEB) at Dalhousie University, Halifax, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bielawski", 
        "givenName": "Joseph P.", 
        "id": "sg:person.01036662646.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036662646.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a004148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000201411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/1544-6115.1779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000885339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0017244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000972689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001464411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-004-2597-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001505053", 
          "https://doi.org/10.1007/s00239-004-2597-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2014.04.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001531327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2006.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001583483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mss266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002805784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002974679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/228159a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003499016", 
          "https://doi.org/10.1038/228159a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.031153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005360660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.031153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005360660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-005-0129-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006291013", 
          "https://doi.org/10.1007/s00239-005-0129-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-005-0129-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006291013", 
          "https://doi.org/10.1007/s00239-005-0129-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008584522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010508653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.170696.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013376469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.185264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013399380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evt151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015648574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017011364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017296065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020427894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msv003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021863416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/psc.310010507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022241960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/psc.310010507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022241960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.103.023226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022494068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.103.023226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022494068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msi105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022762523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msu196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025019739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026036940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.111.136432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026384530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.111.136432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026384530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026684528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msi237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027505844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029083370", 
          "https://doi.org/10.1186/1471-2105-7-148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029083370", 
          "https://doi.org/10.1186/1471-2105-7-148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-7-154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029370575", 
          "https://doi.org/10.1186/1471-2148-7-154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029850425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030960085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0403999101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032211869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msv035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032474753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033106693", 
          "https://doi.org/10.1186/1471-2105-6-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-004-0153-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033307854", 
          "https://doi.org/10.1007/s00239-004-0153-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-004-0153-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033307854", 
          "https://doi.org/10.1007/s00239-004-0153-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033623455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbn049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036701271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036898537", 
          "https://doi.org/10.1038/nature02601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036898537", 
          "https://doi.org/10.1038/nature02601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msn145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041444790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1001571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043035010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.044917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043524918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.044917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043524918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044561088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2011.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044982584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpbi.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045855091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msg003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046094221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msl175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049426731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msr198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049665878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052642623", 
          "https://doi.org/10.1186/1471-2105-7-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/677571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058859701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/8.3.275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msw160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059923282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msw237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059923342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/22.3.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060047118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.185.4154.862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062510273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5456.1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.183889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067739524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.183889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067739524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.183889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067739524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074632806", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670415", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082587004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082587005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083241662", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:osobl/9780199601165.003.0006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089096594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msy047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101798392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msy047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101798392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msy047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101798392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msy049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101798394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msy049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101798394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msy049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101798394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41559-018-0584-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105236479", 
          "https://doi.org/10.1038/s41559-018-0584-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41559-018-0584-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105236479", 
          "https://doi.org/10.1038/s41559-018-0584-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: An excess of nonsynonymous substitutions, over neutrality, is considered evidence of positive Darwinian selection. Inference for proteins often relies on estimation of the nonsynonymous to synonymous ratio (\u03c9\u00a0=\u00a0dN/dS) within a codon model. However, to ease computational difficulties, \u03c9 is typically estimated assuming an idealized substitution process where (i) all nonsynonymous substitutions have the same rate (regardless of impact on organism fitness) and (ii) instantaneous double and triple (DT) nucleotide mutations have zero probability (despite evidence that they can occur). It follows that estimates of \u03c9 represent an imperfect summary of the intensity of selection, and that tests based on the \u03c9\u00a0>\u20091 threshold could be negatively impacted.\nRESULTS: We developed a general-purpose parametric (GPP) modelling framework for codons. This novel approach allows specification of all possible instantaneous codon substitutions, including multiple nonsynonymous rates (MNRs) and instantaneous DT nucleotide changes. Existing codon models are specified as special cases of the GPP model. We use GPP models to implement likelihood ratio tests for \u03c9\u00a0>\u20091 that accommodate MNRs and DT mutations. Through both simulation and real data analysis, we find that failure to model MNRs and DT mutations reduces power in some cases and inflates false positives in others. False positives under traditional M2a and M8 models were very sensitive to DT changes. This was exacerbated by the choice of frequency parameterization (GY vs. MG), with rates sometimes >\u200990% under MG. By including MNRs and DT mutations, accuracy and power was greatly improved under the GPP framework. However, we also find that over-parameterized models can perform less well, and this can contribute to degraded performance of LRTs.\nCONCLUSIONS: We suggest GPP models should be used alongside traditional codon models. Further, all codon models should be deployed within an experimental design that includes (i) assessing robustness to model assumptions, and (ii) investigation of non-standard behaviour of MLEs. As the goal of every analysis is to avoid false conclusions, more work is needed on model selection methods that consider both the increase in fit engendered by a model parameter and the degree to which that parameter is affected by un-modelled evolutionary processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12862-018-1326-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Improved inference of site-specific positive selection under a generalized parametric codon model when there are multinucleotide mutations and multiple nonsynonymous rates", 
    "pagination": "22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c92f32e31723207efcd8211eefdea3a130e57c105f592dbefe5fba4acf20b30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30642241"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12862-018-1326-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111402967"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12862-018-1326-7", 
      "https://app.dimensions.ai/details/publication/pub.1111402967"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60369_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12862-018-1326-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1326-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1326-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1326-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1326-7'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      96 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12862-018-1326-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nba9104d5fd8d4d0d880e44b224efe154
4 schema:citation sg:pub.10.1007/s00239-004-0153-1
5 sg:pub.10.1007/s00239-004-2597-8
6 sg:pub.10.1007/s00239-005-0129-9
7 sg:pub.10.1038/228159a0
8 sg:pub.10.1038/nature02601
9 sg:pub.10.1038/s41559-018-0584-5
10 sg:pub.10.1186/1471-2105-6-134
11 sg:pub.10.1186/1471-2105-7-1
12 sg:pub.10.1186/1471-2105-7-148
13 sg:pub.10.1186/1471-2148-7-154
14 https://app.dimensions.ai/details/publication/pub.1074632806
15 https://app.dimensions.ai/details/publication/pub.1074670415
16 https://app.dimensions.ai/details/publication/pub.1083241662
17 https://doi.org/10.1002/cpbi.2
18 https://doi.org/10.1002/psc.310010507
19 https://doi.org/10.1016/j.celrep.2014.04.053
20 https://doi.org/10.1016/j.cub.2011.05.013
21 https://doi.org/10.1016/j.gene.2006.04.024
22 https://doi.org/10.1073/pnas.0403999101
23 https://doi.org/10.1086/677571
24 https://doi.org/10.1093/acprof:osobl/9780199601165.003.0006
25 https://doi.org/10.1093/bib/bbn049
26 https://doi.org/10.1093/bioinformatics/8.3.275
27 https://doi.org/10.1093/gbe/evt151
28 https://doi.org/10.1093/molbev/msg003
29 https://doi.org/10.1093/molbev/msg184
30 https://doi.org/10.1093/molbev/msh098
31 https://doi.org/10.1093/molbev/msi105
32 https://doi.org/10.1093/molbev/msi237
33 https://doi.org/10.1093/molbev/msl175
34 https://doi.org/10.1093/molbev/msm064
35 https://doi.org/10.1093/molbev/msm088
36 https://doi.org/10.1093/molbev/msn145
37 https://doi.org/10.1093/molbev/msp031
38 https://doi.org/10.1093/molbev/msr198
39 https://doi.org/10.1093/molbev/mss266
40 https://doi.org/10.1093/molbev/msu196
41 https://doi.org/10.1093/molbev/msv003
42 https://doi.org/10.1093/molbev/msv035
43 https://doi.org/10.1093/molbev/msw160
44 https://doi.org/10.1093/molbev/msw237
45 https://doi.org/10.1093/molbev/msy047
46 https://doi.org/10.1093/molbev/msy049
47 https://doi.org/10.1093/oxfordjournals.molbev.a003851
48 https://doi.org/10.1093/oxfordjournals.molbev.a003945
49 https://doi.org/10.1093/oxfordjournals.molbev.a004148
50 https://doi.org/10.1093/oxfordjournals.molbev.a025888
51 https://doi.org/10.1093/oxfordjournals.molbev.a026006
52 https://doi.org/10.1093/oxfordjournals.molbev.a040152
53 https://doi.org/10.1093/oxfordjournals.molbev.a040153
54 https://doi.org/10.1093/sysbio/22.3.240
55 https://doi.org/10.1101/gr.170696.113
56 https://doi.org/10.1111/1467-9868.00273
57 https://doi.org/10.1126/science.185.4154.862
58 https://doi.org/10.1126/science.287.5456.1283
59 https://doi.org/10.1371/journal.pbio.1001571
60 https://doi.org/10.1371/journal.pcbi.1000885
61 https://doi.org/10.1371/journal.pgen.1002764
62 https://doi.org/10.1371/journal.pgen.1006315
63 https://doi.org/10.1371/journal.pone.0017244
64 https://doi.org/10.1515/1544-6115.1779
65 https://doi.org/10.1534/genetics.103.023226
66 https://doi.org/10.1534/genetics.104.031153
67 https://doi.org/10.1534/genetics.105.044917
68 https://doi.org/10.1534/genetics.111.136432
69 https://doi.org/10.1534/genetics.115.183889
70 https://doi.org/10.1534/genetics.115.185264
71 schema:datePublished 2019-12
72 schema:datePublishedReg 2019-12-01
73 schema:description BACKGROUND: An excess of nonsynonymous substitutions, over neutrality, is considered evidence of positive Darwinian selection. Inference for proteins often relies on estimation of the nonsynonymous to synonymous ratio (ω = dN/dS) within a codon model. However, to ease computational difficulties, ω is typically estimated assuming an idealized substitution process where (i) all nonsynonymous substitutions have the same rate (regardless of impact on organism fitness) and (ii) instantaneous double and triple (DT) nucleotide mutations have zero probability (despite evidence that they can occur). It follows that estimates of ω represent an imperfect summary of the intensity of selection, and that tests based on the ω > 1 threshold could be negatively impacted. RESULTS: We developed a general-purpose parametric (GPP) modelling framework for codons. This novel approach allows specification of all possible instantaneous codon substitutions, including multiple nonsynonymous rates (MNRs) and instantaneous DT nucleotide changes. Existing codon models are specified as special cases of the GPP model. We use GPP models to implement likelihood ratio tests for ω > 1 that accommodate MNRs and DT mutations. Through both simulation and real data analysis, we find that failure to model MNRs and DT mutations reduces power in some cases and inflates false positives in others. False positives under traditional M2a and M8 models were very sensitive to DT changes. This was exacerbated by the choice of frequency parameterization (GY vs. MG), with rates sometimes > 90% under MG. By including MNRs and DT mutations, accuracy and power was greatly improved under the GPP framework. However, we also find that over-parameterized models can perform less well, and this can contribute to degraded performance of LRTs. CONCLUSIONS: We suggest GPP models should be used alongside traditional codon models. Further, all codon models should be deployed within an experimental design that includes (i) assessing robustness to model assumptions, and (ii) investigation of non-standard behaviour of MLEs. As the goal of every analysis is to avoid false conclusions, more work is needed on model selection methods that consider both the increase in fit engendered by a model parameter and the degree to which that parameter is affected by un-modelled evolutionary processes.
74 schema:genre research_article
75 schema:inLanguage en
76 schema:isAccessibleForFree true
77 schema:isPartOf Nea2f322d9bcb4f6988360365a749e8e0
78 Nf85417eb89714400ab09c683bae0cddc
79 sg:journal.1024249
80 schema:name Improved inference of site-specific positive selection under a generalized parametric codon model when there are multinucleotide mutations and multiple nonsynonymous rates
81 schema:pagination 22
82 schema:productId N2802e4f2c86d478a88f3b1cdd0b4c49a
83 Na9fb79d9715446b0b09ba3e9072b83f5
84 Nd0dbfbee22b7492984fbe756eb2d050b
85 Ndcdeeb72b8bc4b429ef52d7ddcc34111
86 Ndef2e907ed9248a7a87d9492be51eaf1
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111402967
88 https://doi.org/10.1186/s12862-018-1326-7
89 schema:sdDatePublished 2019-04-11T11:05
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nb33db683ee6a439e8f67fb0fd480b4d9
92 schema:url https://link.springer.com/10.1186%2Fs12862-018-1326-7
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N242924aee4ce481289d862bd55b5361a rdf:first sg:person.01036662646.39
97 rdf:rest rdf:nil
98 N2802e4f2c86d478a88f3b1cdd0b4c49a schema:name nlm_unique_id
99 schema:value 100966975
100 rdf:type schema:PropertyValue
101 N68a6ff4c19fb449f9508c88bc814732d rdf:first sg:person.01304026324.55
102 rdf:rest N7c288cb468c2481ebe2d80eca0a92a68
103 N7c288cb468c2481ebe2d80eca0a92a68 rdf:first sg:person.01075711761.17
104 rdf:rest N242924aee4ce481289d862bd55b5361a
105 Na9fb79d9715446b0b09ba3e9072b83f5 schema:name pubmed_id
106 schema:value 30642241
107 rdf:type schema:PropertyValue
108 Nb33db683ee6a439e8f67fb0fd480b4d9 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nba9104d5fd8d4d0d880e44b224efe154 rdf:first sg:person.0654321046.00
111 rdf:rest N68a6ff4c19fb449f9508c88bc814732d
112 Nd0dbfbee22b7492984fbe756eb2d050b schema:name dimensions_id
113 schema:value pub.1111402967
114 rdf:type schema:PropertyValue
115 Ndcdeeb72b8bc4b429ef52d7ddcc34111 schema:name doi
116 schema:value 10.1186/s12862-018-1326-7
117 rdf:type schema:PropertyValue
118 Ndef2e907ed9248a7a87d9492be51eaf1 schema:name readcube_id
119 schema:value 3c92f32e31723207efcd8211eefdea3a130e57c105f592dbefe5fba4acf20b30
120 rdf:type schema:PropertyValue
121 Nea2f322d9bcb4f6988360365a749e8e0 schema:volumeNumber 19
122 rdf:type schema:PublicationVolume
123 Nf85417eb89714400ab09c683bae0cddc schema:issueNumber 1
124 rdf:type schema:PublicationIssue
125 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
126 schema:name Mathematical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
129 schema:name Statistics
130 rdf:type schema:DefinedTerm
131 sg:journal.1024249 schema:issn 1471-2148
132 schema:name BMC Evolutionary Biology
133 rdf:type schema:Periodical
134 sg:person.01036662646.39 schema:affiliation https://www.grid.ac/institutes/grid.55602.34
135 schema:familyName Bielawski
136 schema:givenName Joseph P.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036662646.39
138 rdf:type schema:Person
139 sg:person.01075711761.17 schema:affiliation https://www.grid.ac/institutes/grid.55602.34
140 schema:familyName Gu
141 schema:givenName Hong
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075711761.17
143 rdf:type schema:Person
144 sg:person.01304026324.55 schema:affiliation https://www.grid.ac/institutes/grid.55602.34
145 schema:familyName Kenney
146 schema:givenName Toby
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304026324.55
148 rdf:type schema:Person
149 sg:person.0654321046.00 schema:affiliation https://www.grid.ac/institutes/grid.55602.34
150 schema:familyName Dunn
151 schema:givenName Katherine A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654321046.00
153 rdf:type schema:Person
154 sg:pub.10.1007/s00239-004-0153-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033307854
155 https://doi.org/10.1007/s00239-004-0153-1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00239-004-2597-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001505053
158 https://doi.org/10.1007/s00239-004-2597-8
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s00239-005-0129-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006291013
161 https://doi.org/10.1007/s00239-005-0129-9
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/228159a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003499016
164 https://doi.org/10.1038/228159a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature02601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898537
167 https://doi.org/10.1038/nature02601
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/s41559-018-0584-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105236479
170 https://doi.org/10.1038/s41559-018-0584-5
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2105-6-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033106693
173 https://doi.org/10.1186/1471-2105-6-134
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2105-7-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052642623
176 https://doi.org/10.1186/1471-2105-7-1
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2105-7-148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029083370
179 https://doi.org/10.1186/1471-2105-7-148
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2148-7-154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029370575
182 https://doi.org/10.1186/1471-2148-7-154
183 rdf:type schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1074632806 schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1074670415 schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1083241662 schema:CreativeWork
187 https://doi.org/10.1002/cpbi.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045855091
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/psc.310010507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022241960
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.celrep.2014.04.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001531327
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.cub.2011.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044982584
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.gene.2006.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001583483
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1073/pnas.0403999101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032211869
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1086/677571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058859701
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/acprof:osobl/9780199601165.003.0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089096594
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bib/bbn049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036701271
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/8.3.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414153
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/gbe/evt151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015648574
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/molbev/msg003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046094221
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/molbev/msg184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030960085
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/molbev/msh098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026684528
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/molbev/msi105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022762523
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/molbev/msi237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027505844
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/molbev/msl175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049426731
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/molbev/msm064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029850425
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/molbev/msm088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020427894
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/molbev/msn145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041444790
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/molbev/msp031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001464411
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/molbev/msr198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049665878
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/molbev/mss266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002805784
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/molbev/msu196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025019739
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/molbev/msv003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021863416
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/molbev/msv035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032474753
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/molbev/msw160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059923282
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/molbev/msw237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059923342
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/molbev/msy047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101798392
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/molbev/msy049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101798394
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/oxfordjournals.molbev.a003851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002974679
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/oxfordjournals.molbev.a003945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026036940
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/oxfordjournals.molbev.a004148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000201411
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/oxfordjournals.molbev.a025888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017296065
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/oxfordjournals.molbev.a026006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017011364
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/oxfordjournals.molbev.a040152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082587004
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/oxfordjournals.molbev.a040153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082587005
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/sysbio/22.3.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060047118
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1101/gr.170696.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013376469
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1111/1467-9868.00273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044561088
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1126/science.185.4154.862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062510273
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1126/science.287.5456.1283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568434
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1371/journal.pbio.1001571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043035010
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1371/journal.pcbi.1000885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008584522
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1371/journal.pgen.1002764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010508653
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1371/journal.pgen.1006315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033623455
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1371/journal.pone.0017244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000972689
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1515/1544-6115.1779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000885339
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1534/genetics.103.023226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022494068
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1534/genetics.104.031153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005360660
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1534/genetics.105.044917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043524918
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1534/genetics.111.136432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026384530
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1534/genetics.115.183889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739524
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1534/genetics.115.185264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013399380
294 rdf:type schema:CreativeWork
295 https://www.grid.ac/institutes/grid.55602.34 schema:alternateName Dalhousie University
296 schema:name Centre Comparative Genomics and Evolutionary Bioinformatics (CGEB) at Dalhousie University, Halifax, Canada
297 Department of Biology, Dalhousie University, B3H 4J1, Halifax, Nova Scotia, Canada
298 Department of Mathematics & Statistics, Dalhousie University, B3H 4J1, Halifax, Nova Scotia, Canada
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...