Evolutionary dynamics of host specialization in wood-decay fungi View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Franz-Sebastian Krah, Claus Bässler, Christoph Heibl, John Soghigian, Hanno Schaefer, David S. Hibbett

ABSTRACT

BACKGROUND: The majority of wood decomposing fungi are mushroom-forming Agaricomycetes, which exhibit two main modes of plant cell wall decomposition: white rot, in which all plant cell wall components are degraded, including lignin, and brown rot, in which lignin is modified but not appreciably removed. Previous studies suggested that brown rot fungi tend to be specialists of gymnosperm hosts and that brown rot promotes gymnosperm specialization. However, these hypotheses were based on analyses of limited datasets of Agaricomycetes. Overcoming this limitation, we used a phylogeny with 1157 species integrating available sequences, assembled decay mode characters from the literature, and coded host specialization using the newly developed R package, rusda. RESULTS: We found that most brown rot fungi are generalists or gymnosperm specialists, whereas most white rot fungi are angiosperm specialists. A six-state model of the evolution of host specialization revealed high transition rates between generalism and specialization in both decay modes. However, while white rot lineages switched most frequently to angiosperm specialists, brown rot lineages switched most frequently to generalism. A time-calibrated phylogeny revealed that Agaricomycetes is older than the flowering plants but many of the large clades originated after the diversification of the angiosperms in the Cretaceous. CONCLUSIONS: Our results challenge the current view that brown rot fungi are primarily gymnosperm specialists and reveal intensive white rot specialization to angiosperm hosts. We thus suggest that brown rot associated convergent loss of lignocellulose degrading enzymes was correlated with host generalism, rather than gymnosperm specialism. A likelihood model of host specialization evolution together with a time-calibrated phylogeny further suggests that the rise of the angiosperms opened a new mega-niche for wood-decay fungi, which was exploited particularly well by white rot lineages. More... »

PAGES

119

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12862-018-1229-7

DOI

http://dx.doi.org/10.1186/s12862-018-1229-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105979166

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30075699


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Basidiomycota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cycadopsida", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fruiting Bodies, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Host-Pathogen Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wood", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Plant Biodiversity Research Group, Center for Food and Life Sciences Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Freising, Germany", 
            "Baverian Forest National Park, Grafenau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krah", 
        "givenName": "Franz-Sebastian", 
        "id": "sg:person.013026751774.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013026751774.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Baverian Forest National Park, Grafenau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e4ssler", 
        "givenName": "Claus", 
        "id": "sg:person.012131423207.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131423207.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Baverian Forest National Park, Grafenau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heibl", 
        "givenName": "Christoph", 
        "id": "sg:person.01245432323.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245432323.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Connecticut Agricultural Experiment Station", 
          "id": "https://www.grid.ac/institutes/grid.421470.4", 
          "name": [
            "Department of Environmental Science, The Connecticut Agricultural Experiment Station, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soghigian", 
        "givenName": "John", 
        "id": "sg:person.0775355541.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775355541.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Plant Biodiversity Research Group, Center for Food and Life Sciences Weihenstephan, Technische Universit\u00e4t M\u00fcnchen, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaefer", 
        "givenName": "Hanno", 
        "id": "sg:person.01211012370.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211012370.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clark University", 
          "id": "https://www.grid.ac/institutes/grid.254277.1", 
          "name": [
            "Biology Department, Clark University, 01610, Worcester, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hibbett", 
        "givenName": "David S.", 
        "id": "sg:person.0777403544.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777403544.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/sysbio/syw037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001134840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1np00042j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003872213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/syu005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007402683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/evo.12180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007771532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3852/13-003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009257799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.py.29.090191.002121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009539868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1523-1739.2010.01455.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013629492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1523-1739.2010.01455.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013629492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mss075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013930907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014918369", 
          "https://doi.org/10.1038/ncomms5471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msu236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015182281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2041-210x.2011.00169.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016527923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2013.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016751402", 
          "https://doi.org/10.1038/ismej.2013.91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/b92-302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019536689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-397940-7.00011-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021328742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbpol.2014.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022521094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024085921", 
          "https://doi.org/10.1007/s10584-006-9174-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015660927710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024108480", 
          "https://doi.org/10.1023/a:1015660927710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.1991.tb00968.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024545081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/syv033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025102152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/syr041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025951470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2013.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028535350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-010-2633-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030582014", 
          "https://doi.org/10.1007/s00253-010-2633-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-010-2633-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030582014", 
          "https://doi.org/10.1007/s00253-010-2633-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1001225107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031613396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/en8087654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032230457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1365-2745.12260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032646875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ece3.2051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035079170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3852/12-118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035292032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035309471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035881992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jobm.200900338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036289811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jobm.200900338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036289811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036584998", 
          "https://doi.org/10.1038/nature06591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037821166", 
          "https://doi.org/10.1038/44766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037821166", 
          "https://doi.org/10.1038/44766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1360-1385(00)01741-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039816738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040915701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2009.01916.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041083262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2009.01916.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041083262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042600951", 
          "https://doi.org/10.1038/ng.3223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-9-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043234723", 
          "https://doi.org/10.1186/1471-2148-9-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043800246", 
          "https://doi.org/10.1038/nrmicro2729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365119a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044072186", 
          "https://doi.org/10.1038/365119a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022993703799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044082641", 
          "https://doi.org/10.1023/a:1022993703799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2016741.2016785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044856663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mst010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045545793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-047514-1.50016-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049663657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msq066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050067374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msq066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050067374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1400592111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050269693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2012.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050758986", 
          "https://doi.org/10.1038/ismej.2012.11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051607942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052392609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052392609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052392609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052392609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msu300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052964628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150121079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150151125879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150802429642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msv337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059923207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msw238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059923343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1221748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1256688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2446014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069938954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2446289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069939190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3759253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070442778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3759417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070442926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3761073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070444411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3802723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070459288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077599324", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10549811.2017.1310049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084163582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/gce.2010.5676129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094315180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139095112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098703598"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: The majority of wood decomposing fungi are mushroom-forming Agaricomycetes, which exhibit two main modes of plant cell wall decomposition: white rot, in which all plant cell wall components are degraded, including lignin, and brown rot, in which lignin is modified but not appreciably removed. Previous studies suggested that brown rot fungi tend to be specialists of gymnosperm hosts and that brown rot promotes gymnosperm specialization. However, these hypotheses were based on analyses of limited datasets of Agaricomycetes. Overcoming this limitation, we used a phylogeny with 1157 species integrating available sequences, assembled decay mode characters from the literature, and coded host specialization using the newly developed R package, rusda.\nRESULTS: We found that most brown rot fungi are generalists or gymnosperm specialists, whereas most white rot fungi are angiosperm specialists. A six-state model of the evolution of host specialization revealed high transition rates between generalism and specialization in both decay modes. However, while white rot lineages switched most frequently to angiosperm specialists, brown rot lineages switched most frequently to generalism. A time-calibrated phylogeny revealed that Agaricomycetes is older than the flowering plants but many of the large clades originated after the diversification of the angiosperms in the Cretaceous.\nCONCLUSIONS: Our results challenge the current view that brown rot fungi are primarily gymnosperm specialists and reveal intensive white rot specialization to angiosperm hosts. We thus suggest that brown rot associated convergent loss of lignocellulose degrading enzymes was correlated with host generalism, rather than gymnosperm specialism. A likelihood model of host specialization evolution together with a time-calibrated phylogeny further suggests that the rise of the angiosperms opened a new mega-niche for wood-decay fungi, which was exploited particularly well by white rot lineages.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12862-018-1229-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3934290", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Evolutionary dynamics of host specialization in wood-decay fungi", 
    "pagination": "119", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b482722618a3f09942776106d62cc9b1d8bae9554e5fd645e54f245c15d12f43"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30075699"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12862-018-1229-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105979166"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12862-018-1229-7", 
      "https://app.dimensions.ai/details/publication/pub.1105979166"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12862-018-1229-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1229-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1229-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1229-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1229-7'


 

This table displays all metadata directly associated to this object as RDF triples.

365 TRIPLES      21 PREDICATES      105 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12862-018-1229-7 schema:about N15c1f8f4eeb1448e8907e74d4820281e
2 N3150637dd0754be8b37b58035a57f429
3 N39317c2e6c7b4c6c9cfd4d6f44807c5f
4 N43d394c499024ee5b796860c16ba63bb
5 N5641b83b656b4810abefd52bfbc82eed
6 N6b10b054805845c789f09c2743a01f76
7 N7a49a435da94485db0418d302175fe6c
8 N98dd11ccbae94fc4904fbca530e626be
9 Ndfc479e42dba4f7f8b59b8a1b9be6c75
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author Ndebd7b60548f4a76973f607db77bf8eb
13 schema:citation sg:pub.10.1007/s00253-010-2633-0
14 sg:pub.10.1007/s10584-006-9174-7
15 sg:pub.10.1023/a:1015660927710
16 sg:pub.10.1023/a:1022993703799
17 sg:pub.10.1038/365119a0
18 sg:pub.10.1038/44766
19 sg:pub.10.1038/ismej.2012.11
20 sg:pub.10.1038/ismej.2013.91
21 sg:pub.10.1038/nature06591
22 sg:pub.10.1038/ncomms5471
23 sg:pub.10.1038/ng.3223
24 sg:pub.10.1038/nrmicro2729
25 sg:pub.10.1186/1471-2148-9-37
26 https://app.dimensions.ai/details/publication/pub.1077599324
27 https://doi.org/10.1002/ece3.2051
28 https://doi.org/10.1002/jobm.200900338
29 https://doi.org/10.1016/b978-0-08-047514-1.50016-0
30 https://doi.org/10.1016/b978-0-12-397940-7.00011-2
31 https://doi.org/10.1016/j.carbpol.2014.03.039
32 https://doi.org/10.1016/j.ympev.2013.02.008
33 https://doi.org/10.1016/j.ympev.2015.09.015
34 https://doi.org/10.1016/s1360-1385(00)01741-6
35 https://doi.org/10.1017/cbo9781139095112
36 https://doi.org/10.1039/c1np00042j
37 https://doi.org/10.1073/pnas.1001225107
38 https://doi.org/10.1073/pnas.1400592111
39 https://doi.org/10.1080/10549811.2017.1310049
40 https://doi.org/10.1080/10635150121079
41 https://doi.org/10.1080/10635150151125879
42 https://doi.org/10.1080/10635150802429642
43 https://doi.org/10.1093/bioinformatics/btg412
44 https://doi.org/10.1093/molbev/msq066
45 https://doi.org/10.1093/molbev/mss075
46 https://doi.org/10.1093/molbev/mst010
47 https://doi.org/10.1093/molbev/msu236
48 https://doi.org/10.1093/molbev/msu300
49 https://doi.org/10.1093/molbev/msv337
50 https://doi.org/10.1093/molbev/msw238
51 https://doi.org/10.1093/nar/gks1195
52 https://doi.org/10.1093/nar/gkt1178
53 https://doi.org/10.1093/nar/gkv318
54 https://doi.org/10.1093/sysbio/syr041
55 https://doi.org/10.1093/sysbio/syu005
56 https://doi.org/10.1093/sysbio/syv033
57 https://doi.org/10.1093/sysbio/syw037
58 https://doi.org/10.1109/gce.2010.5676129
59 https://doi.org/10.1109/tac.1974.1100705
60 https://doi.org/10.1111/1365-2745.12260
61 https://doi.org/10.1111/evo.12180
62 https://doi.org/10.1111/j.1365-2486.2009.01916.x
63 https://doi.org/10.1111/j.1469-8137.1991.tb00968.x
64 https://doi.org/10.1111/j.1523-1739.2010.01455.x
65 https://doi.org/10.1111/j.2041-210x.2011.00169.x
66 https://doi.org/10.1126/science.1221748
67 https://doi.org/10.1126/science.1256688
68 https://doi.org/10.1139/b92-302
69 https://doi.org/10.1145/2016741.2016785
70 https://doi.org/10.1146/annurev.py.29.090191.002121
71 https://doi.org/10.2307/2446014
72 https://doi.org/10.2307/2446289
73 https://doi.org/10.2307/3759253
74 https://doi.org/10.2307/3759417
75 https://doi.org/10.2307/3761073
76 https://doi.org/10.2307/3802723
77 https://doi.org/10.3390/en8087654
78 https://doi.org/10.3852/12-118
79 https://doi.org/10.3852/13-003
80 schema:datePublished 2018-12
81 schema:datePublishedReg 2018-12-01
82 schema:description BACKGROUND: The majority of wood decomposing fungi are mushroom-forming Agaricomycetes, which exhibit two main modes of plant cell wall decomposition: white rot, in which all plant cell wall components are degraded, including lignin, and brown rot, in which lignin is modified but not appreciably removed. Previous studies suggested that brown rot fungi tend to be specialists of gymnosperm hosts and that brown rot promotes gymnosperm specialization. However, these hypotheses were based on analyses of limited datasets of Agaricomycetes. Overcoming this limitation, we used a phylogeny with 1157 species integrating available sequences, assembled decay mode characters from the literature, and coded host specialization using the newly developed R package, rusda. RESULTS: We found that most brown rot fungi are generalists or gymnosperm specialists, whereas most white rot fungi are angiosperm specialists. A six-state model of the evolution of host specialization revealed high transition rates between generalism and specialization in both decay modes. However, while white rot lineages switched most frequently to angiosperm specialists, brown rot lineages switched most frequently to generalism. A time-calibrated phylogeny revealed that Agaricomycetes is older than the flowering plants but many of the large clades originated after the diversification of the angiosperms in the Cretaceous. CONCLUSIONS: Our results challenge the current view that brown rot fungi are primarily gymnosperm specialists and reveal intensive white rot specialization to angiosperm hosts. We thus suggest that brown rot associated convergent loss of lignocellulose degrading enzymes was correlated with host generalism, rather than gymnosperm specialism. A likelihood model of host specialization evolution together with a time-calibrated phylogeny further suggests that the rise of the angiosperms opened a new mega-niche for wood-decay fungi, which was exploited particularly well by white rot lineages.
83 schema:genre research_article
84 schema:inLanguage en
85 schema:isAccessibleForFree true
86 schema:isPartOf N8a43b9b114de4af9a3407e9f120892fd
87 N8dbc29f4e9aa42eab8f12c4d3500be33
88 sg:journal.1024249
89 schema:name Evolutionary dynamics of host specialization in wood-decay fungi
90 schema:pagination 119
91 schema:productId N029a2a1245164e0bb9d7fc164b1c976a
92 N18e66f63d8ea428a8faf14120e136bdc
93 N1f37fb64ad1c4fc291f191843230cd73
94 N46fd54f1e1624526a7693305a8e4490b
95 Nc20ff65db5be4a92b5584ea3703988fd
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105979166
97 https://doi.org/10.1186/s12862-018-1229-7
98 schema:sdDatePublished 2019-04-10T15:10
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher Nef697a81cb844a898b72df52f37054f8
101 schema:url https://link.springer.com/10.1186%2Fs12862-018-1229-7
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N029a2a1245164e0bb9d7fc164b1c976a schema:name pubmed_id
106 schema:value 30075699
107 rdf:type schema:PropertyValue
108 N15c1f8f4eeb1448e8907e74d4820281e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Fruiting Bodies, Fungal
110 rdf:type schema:DefinedTerm
111 N18e66f63d8ea428a8faf14120e136bdc schema:name doi
112 schema:value 10.1186/s12862-018-1229-7
113 rdf:type schema:PropertyValue
114 N1b273a6012e747ce8419ecc5c87a64a7 rdf:first sg:person.012131423207.15
115 rdf:rest N3a6f3c158b154fa08a7a15d93163e1fa
116 N1f37fb64ad1c4fc291f191843230cd73 schema:name readcube_id
117 schema:value b482722618a3f09942776106d62cc9b1d8bae9554e5fd645e54f245c15d12f43
118 rdf:type schema:PropertyValue
119 N3150637dd0754be8b37b58035a57f429 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Wood
121 rdf:type schema:DefinedTerm
122 N39317c2e6c7b4c6c9cfd4d6f44807c5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Species Specificity
124 rdf:type schema:DefinedTerm
125 N3a6f3c158b154fa08a7a15d93163e1fa rdf:first sg:person.01245432323.10
126 rdf:rest Nc4091d687bda421b86ba21e9914bc5e2
127 N43d394c499024ee5b796860c16ba63bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Phylogeny
129 rdf:type schema:DefinedTerm
130 N45685d8330b041a98df127c89816055c rdf:first sg:person.01211012370.31
131 rdf:rest Nd7d04430079549bf8102a6973cbe04b0
132 N46fd54f1e1624526a7693305a8e4490b schema:name dimensions_id
133 schema:value pub.1105979166
134 rdf:type schema:PropertyValue
135 N5641b83b656b4810abefd52bfbc82eed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Cycadopsida
137 rdf:type schema:DefinedTerm
138 N6b10b054805845c789f09c2743a01f76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Basidiomycota
140 rdf:type schema:DefinedTerm
141 N71290c1473d342248232cb50da55a5e3 schema:name Baverian Forest National Park, Grafenau, Germany
142 rdf:type schema:Organization
143 N7a49a435da94485db0418d302175fe6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Biological Evolution
145 rdf:type schema:DefinedTerm
146 N8a43b9b114de4af9a3407e9f120892fd schema:volumeNumber 18
147 rdf:type schema:PublicationVolume
148 N8dbc29f4e9aa42eab8f12c4d3500be33 schema:issueNumber 1
149 rdf:type schema:PublicationIssue
150 N98dd11ccbae94fc4904fbca530e626be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Models, Biological
152 rdf:type schema:DefinedTerm
153 Nc20ff65db5be4a92b5584ea3703988fd schema:name nlm_unique_id
154 schema:value 100966975
155 rdf:type schema:PropertyValue
156 Nc4091d687bda421b86ba21e9914bc5e2 rdf:first sg:person.0775355541.74
157 rdf:rest N45685d8330b041a98df127c89816055c
158 Nd7d04430079549bf8102a6973cbe04b0 rdf:first sg:person.0777403544.79
159 rdf:rest rdf:nil
160 Ndebd7b60548f4a76973f607db77bf8eb rdf:first sg:person.013026751774.06
161 rdf:rest N1b273a6012e747ce8419ecc5c87a64a7
162 Ndfc479e42dba4f7f8b59b8a1b9be6c75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Host-Pathogen Interactions
164 rdf:type schema:DefinedTerm
165 Nef697a81cb844a898b72df52f37054f8 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 Nfea9a070458f4de789681866cb56b65e schema:name Baverian Forest National Park, Grafenau, Germany
168 rdf:type schema:Organization
169 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
170 schema:name Biological Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
173 schema:name Genetics
174 rdf:type schema:DefinedTerm
175 sg:grant.3934290 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-018-1229-7
176 rdf:type schema:MonetaryGrant
177 sg:journal.1024249 schema:issn 1471-2148
178 schema:name BMC Evolutionary Biology
179 rdf:type schema:Periodical
180 sg:person.01211012370.31 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
181 schema:familyName Schaefer
182 schema:givenName Hanno
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211012370.31
184 rdf:type schema:Person
185 sg:person.012131423207.15 schema:affiliation Nfea9a070458f4de789681866cb56b65e
186 schema:familyName Bässler
187 schema:givenName Claus
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131423207.15
189 rdf:type schema:Person
190 sg:person.01245432323.10 schema:affiliation N71290c1473d342248232cb50da55a5e3
191 schema:familyName Heibl
192 schema:givenName Christoph
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245432323.10
194 rdf:type schema:Person
195 sg:person.013026751774.06 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
196 schema:familyName Krah
197 schema:givenName Franz-Sebastian
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013026751774.06
199 rdf:type schema:Person
200 sg:person.0775355541.74 schema:affiliation https://www.grid.ac/institutes/grid.421470.4
201 schema:familyName Soghigian
202 schema:givenName John
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775355541.74
204 rdf:type schema:Person
205 sg:person.0777403544.79 schema:affiliation https://www.grid.ac/institutes/grid.254277.1
206 schema:familyName Hibbett
207 schema:givenName David S.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777403544.79
209 rdf:type schema:Person
210 sg:pub.10.1007/s00253-010-2633-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030582014
211 https://doi.org/10.1007/s00253-010-2633-0
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s10584-006-9174-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024085921
214 https://doi.org/10.1007/s10584-006-9174-7
215 rdf:type schema:CreativeWork
216 sg:pub.10.1023/a:1015660927710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024108480
217 https://doi.org/10.1023/a:1015660927710
218 rdf:type schema:CreativeWork
219 sg:pub.10.1023/a:1022993703799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044082641
220 https://doi.org/10.1023/a:1022993703799
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/365119a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044072186
223 https://doi.org/10.1038/365119a0
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/44766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037821166
226 https://doi.org/10.1038/44766
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/ismej.2012.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050758986
229 https://doi.org/10.1038/ismej.2012.11
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/ismej.2013.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016751402
232 https://doi.org/10.1038/ismej.2013.91
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nature06591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036584998
235 https://doi.org/10.1038/nature06591
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/ncomms5471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014918369
238 https://doi.org/10.1038/ncomms5471
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/ng.3223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042600951
241 https://doi.org/10.1038/ng.3223
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/nrmicro2729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043800246
244 https://doi.org/10.1038/nrmicro2729
245 rdf:type schema:CreativeWork
246 sg:pub.10.1186/1471-2148-9-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043234723
247 https://doi.org/10.1186/1471-2148-9-37
248 rdf:type schema:CreativeWork
249 https://app.dimensions.ai/details/publication/pub.1077599324 schema:CreativeWork
250 https://doi.org/10.1002/ece3.2051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035079170
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1002/jobm.200900338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036289811
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/b978-0-08-047514-1.50016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049663657
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/b978-0-12-397940-7.00011-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021328742
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.carbpol.2014.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022521094
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.ympev.2013.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028535350
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.ympev.2015.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052392609
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s1360-1385(00)01741-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039816738
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1017/cbo9781139095112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098703598
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1039/c1np00042j schema:sameAs https://app.dimensions.ai/details/publication/pub.1003872213
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1073/pnas.1001225107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031613396
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1073/pnas.1400592111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050269693
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1080/10549811.2017.1310049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084163582
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1080/10635150121079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369173
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1080/10635150151125879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369188
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1080/10635150802429642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369815
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1093/bioinformatics/btg412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607942
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/molbev/msq066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050067374
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/molbev/mss075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013930907
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1093/molbev/mst010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045545793
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1093/molbev/msu236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015182281
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1093/molbev/msu300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052964628
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1093/molbev/msv337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059923207
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1093/molbev/msw238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059923343
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1093/nar/gks1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035881992
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1093/nar/gkt1178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035309471
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1093/nar/gkv318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040915701
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1093/sysbio/syr041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025951470
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1093/sysbio/syu005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007402683
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1093/sysbio/syv033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025102152
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1093/sysbio/syw037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001134840
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1109/gce.2010.5676129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094315180
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1111/1365-2745.12260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032646875
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1111/evo.12180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007771532
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1111/j.1365-2486.2009.01916.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041083262
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1111/j.1469-8137.1991.tb00968.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024545081
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1111/j.1523-1739.2010.01455.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013629492
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1111/j.2041-210x.2011.00169.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016527923
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1126/science.1221748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466653
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1126/science.1256688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470140
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1139/b92-302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019536689
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1145/2016741.2016785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044856663
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1146/annurev.py.29.090191.002121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009539868
337 rdf:type schema:CreativeWork
338 https://doi.org/10.2307/2446014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069938954
339 rdf:type schema:CreativeWork
340 https://doi.org/10.2307/2446289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069939190
341 rdf:type schema:CreativeWork
342 https://doi.org/10.2307/3759253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070442778
343 rdf:type schema:CreativeWork
344 https://doi.org/10.2307/3759417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070442926
345 rdf:type schema:CreativeWork
346 https://doi.org/10.2307/3761073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070444411
347 rdf:type schema:CreativeWork
348 https://doi.org/10.2307/3802723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070459288
349 rdf:type schema:CreativeWork
350 https://doi.org/10.3390/en8087654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032230457
351 rdf:type schema:CreativeWork
352 https://doi.org/10.3852/12-118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035292032
353 rdf:type schema:CreativeWork
354 https://doi.org/10.3852/13-003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009257799
355 rdf:type schema:CreativeWork
356 https://www.grid.ac/institutes/grid.254277.1 schema:alternateName Clark University
357 schema:name Biology Department, Clark University, 01610, Worcester, MA, USA
358 rdf:type schema:Organization
359 https://www.grid.ac/institutes/grid.421470.4 schema:alternateName Connecticut Agricultural Experiment Station
360 schema:name Department of Environmental Science, The Connecticut Agricultural Experiment Station, 06511, New Haven, CT, USA
361 rdf:type schema:Organization
362 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
363 schema:name Baverian Forest National Park, Grafenau, Germany
364 Plant Biodiversity Research Group, Center for Food and Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
365 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...