Evidence for late Pleistocene origin of Astyanax mexicanus cavefish View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Julien Fumey, Hélène Hinaux, Céline Noirot, Claude Thermes, Sylvie Rétaux, Didier Casane

ABSTRACT

BACKGROUND: Cavefish populations belonging to the Mexican tetra species Astyanax mexicanus are outstanding models to study the tempo and mode of adaptation to a radical environmental change. They are currently assigned to two main groups, the so-called "old" and "new" lineages, which would have populated several caves independently and at different times. However, we do not have yet accurate estimations of the time frames of evolution of these populations. RESULTS: We reanalyzed the geographic distribution of mitochondrial and nuclear DNA polymorphisms and we found that these data do not support the existence of two cavefish lineages. Using IMa2, a program that allows dating population divergence in addition to demographic parameters, we found that microsatellite polymorphism strongly supports a very recent origin of cave populations (< 20,000 years). We identified a large number of single-nucleotide polymorphisms (SNPs) in transcript sequences of pools of embryos (Pool-seq) belonging to Pachón cave population and a surface population from Texas. Based on summary statistics that can be computed with this SNP data set together with simulations of evolution of SNP polymorphisms in two recently isolated populations, we looked for sets of demographic parameters that allow the computation of summary statistics with simulated populations that are similar to the ones with the sampled populations. In most simulations for which we could find a good fit between the summary statistics of observed and simulated data, the best fit occurred when the divergence between simulated populations was less than 30,000 years. CONCLUSIONS: Although it is often assumed that some cave populations have a very ancient origin, a recent origin of these populations is strongly supported by our analyses of independent sets of nuclear DNA polymorphism. Moreover, the observation of two divergent haplogroups of mitochondrial and nuclear genes with different geographic distributions support a recent admixture of two divergent surface populations, before the isolation of cave populations. If cave populations are indeed only several thousand years old, many phenotypic changes observed in cavefish would thus have mainly involved the fixation of genetic variants present in surface fish populations and within a very short period of time. More... »

PAGES

43

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12862-018-1156-7

DOI

http://dx.doi.org/10.1186/s12862-018-1156-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103308719

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29665771


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caves", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Characidae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Mitochondrial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "History, Ancient", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mexico", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "New Mexico", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Texas", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Integrative Biology of the Cell", 
          "id": "https://www.grid.ac/institutes/grid.462411.4", 
          "name": [
            "\u00c9volution, G\u00e9nomes, Comportement, \u00c9cologie, CNRS, IRD, Univ Paris-Sud. Universit\u00e9 Paris-Saclay, F-91198, Gif-sur-Yvette, France", 
            "Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Universit\u00e9 Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, B\u00e2timent 24, Gif-sur-Yvette, F-91198, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fumey", 
        "givenName": "Julien", 
        "id": "sg:person.01265033755.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265033755.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "DECA group, Paris-Saclay Institute of Neuroscience, UMR 9197, CNRS, Gif sur Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hinaux", 
        "givenName": "H\u00e9l\u00e8ne", 
        "id": "sg:person.0774320674.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774320674.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Plateforme Bioinformatique Toulouse, Midi-Pyr\u00e9n\u00e9es, UBIA, INRA, Auzeville Castanet-Tolosan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noirot", 
        "givenName": "C\u00e9line", 
        "id": "sg:person.01005477724.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005477724.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Integrative Biology of the Cell", 
          "id": "https://www.grid.ac/institutes/grid.462411.4", 
          "name": [
            "Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Universit\u00e9 Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, B\u00e2timent 24, Gif-sur-Yvette, F-91198, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thermes", 
        "givenName": "Claude", 
        "id": "sg:person.01104126206.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104126206.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "DECA group, Paris-Saclay Institute of Neuroscience, UMR 9197, CNRS, Gif sur Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00e9taux", 
        "givenName": "Sylvie", 
        "id": "sg:person.01341224274.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341224274.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "\u00c9volution, G\u00e9nomes, Comportement, \u00c9cologie, CNRS, IRD, Univ Paris-Sud. Universit\u00e9 Paris-Saclay, F-91198, Gif-sur-Yvette, France", 
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casane", 
        "givenName": "Didier", 
        "id": "sg:person.0763476537.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763476537.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a004100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000018925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ydbio.2009.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000651550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dneu.22239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003498034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10709-006-0003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004962779", 
          "https://doi.org/10.1007/s10709-006-0003-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2011.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005496653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2010.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005668171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7007-11-81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005995462", 
          "https://doi.org/10.1186/1741-7007-11-81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.103.024182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006289441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.103.024182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006289441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(93)81673-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006571327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1240276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006742559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011881921023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007070988", 
          "https://doi.org/10.1023/a:1011881921023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000115853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007572831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0053553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008806599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009297609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1525-142x.2008.00235.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009302336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1525-142x.2008.00235.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009302336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009528768", 
          "https://doi.org/10.1038/ncomms4647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-294x.2003.01753.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009531663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2014.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011392921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.adgen.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012728052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-ecolsys-102209-144621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013206215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7007-10-108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014647299", 
          "https://doi.org/10.1186/1741-7007-10-108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2011.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015091182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-12-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015275049", 
          "https://doi.org/10.1186/1471-2148-12-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-genet-102108-134216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015613735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1510802112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016069679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016140693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2011.05377.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016225631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-8-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017941480", 
          "https://doi.org/10.1186/1471-2148-8-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2041-9139-5-35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017947399", 
          "https://doi.org/10.1186/2041-9139-5-35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019878292", 
          "https://doi.org/10.1038/nature13726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2010.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020595237", 
          "https://doi.org/10.1038/hdy.2010.7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2010.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020595237", 
          "https://doi.org/10.1038/hdy.2010.7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00379810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020974926", 
          "https://doi.org/10.1007/bf00379810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00379810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020974926", 
          "https://doi.org/10.1007/bf00379810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0057281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022615323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0107877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023605437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0107877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023605437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2052.1998.295359.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023726020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12862-016-0716-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024676113", 
          "https://doi.org/10.1186/s12862-016-0716-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12862-016-0716-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024676113", 
          "https://doi.org/10.1186/s12862-016-0716-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.23.9315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025386162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2010.04952.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025902374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12915-015-0223-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026992084", 
          "https://doi.org/10.1186/s12915-015-0223-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.2012.01822.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027135366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000341403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030422016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-12-105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031070101", 
          "https://doi.org/10.1186/1471-2148-12-105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-8-340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032468470", 
          "https://doi.org/10.1186/1471-2148-8-340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-ecolsys-102209-144644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033153482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035741028", 
          "https://doi.org/10.1038/nrg3130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2041-9139-4-26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035755269", 
          "https://doi.org/10.1186/2041-9139-4-26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00001496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036969700", 
          "https://doi.org/10.1007/bf00001496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2011.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037511761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2010.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037657585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/217624a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037698058", 
          "https://doi.org/10.1038/217624a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/217624a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037698058", 
          "https://doi.org/10.1038/217624a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2009.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038648775", 
          "https://doi.org/10.1038/hdy.2009.184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2009.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038648775", 
          "https://doi.org/10.1038/hdy.2009.184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mst136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039353393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1001142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040898412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041545486", 
          "https://doi.org/10.1038/ncomms3769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dvdy.22144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042349921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dvdy.22144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042349921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2004.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043516865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044917208", 
          "https://doi.org/10.1038/ncomms6307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045018123", 
          "https://doi.org/10.1038/nrg3803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0119370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045423367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2012.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047618879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2041-9139-4-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048036861", 
          "https://doi.org/10.1186/2041-9139-4-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.2003.00230.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048410865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.081068098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048901100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049211009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049383016", 
          "https://doi.org/10.1038/nrg3688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0469.1991.tb00673.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050038175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(74)90064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052772378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.134.3489.1501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062476600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5278.1091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5038/1827-806x.16.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072563304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358436", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080617744", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082454016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083123762", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2017.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084512496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1972.tb00170.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085715161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13227-017-0086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093094988", 
          "https://doi.org/10.1186/s13227-017-0086-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Cavefish populations belonging to the Mexican tetra species Astyanax mexicanus are outstanding models to study the tempo and mode of adaptation to a radical environmental change. They are currently assigned to two main groups, the so-called \"old\" and \"new\" lineages, which would have populated several caves independently and at different times. However, we do not have yet accurate estimations of the time frames of evolution of these populations.\nRESULTS: We reanalyzed the geographic distribution of mitochondrial and nuclear DNA polymorphisms and we found that these data do not support the existence of two cavefish lineages. Using IMa2, a program that allows dating population divergence in addition to demographic parameters, we found that microsatellite polymorphism strongly supports a very recent origin of cave populations (<\u200920,000\u00a0years). We identified a large number of single-nucleotide polymorphisms (SNPs) in transcript sequences of pools of embryos (Pool-seq) belonging to Pach\u00f3n cave population and a surface population from Texas. Based on summary statistics that can be computed with this SNP data set together with simulations of evolution of SNP polymorphisms in two recently isolated populations, we looked for sets of demographic parameters that allow the computation of summary statistics with simulated populations that are similar to the ones with the sampled populations. In most simulations for which we could find a good fit between the summary statistics of observed and simulated data, the best fit occurred when the divergence between simulated populations was less than 30,000\u00a0years.\nCONCLUSIONS: Although it is often assumed that some cave populations have a very ancient origin, a recent origin of these populations is strongly supported by our analyses of independent sets of nuclear DNA polymorphism. Moreover, the observation of two divergent haplogroups of mitochondrial and nuclear genes with different geographic distributions support a recent admixture of two divergent surface populations, before the isolation of cave populations. If cave populations are indeed only several thousand years old, many phenotypic changes observed in cavefish would thus have mainly involved the fixation of genetic variants present in surface fish populations and within a very short period of time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12862-018-1156-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Evidence for late Pleistocene origin of Astyanax mexicanus cavefish", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "20e5e56b5b5d354b1a89fb99732585cdc1e963b5f38b6a666a81c96459a95035"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29665771"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12862-018-1156-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103308719"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12862-018-1156-7", 
      "https://app.dimensions.ai/details/publication/pub.1103308719"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12862-018-1156-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1156-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1156-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1156-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-018-1156-7'


 

This table displays all metadata directly associated to this object as RDF triples.

425 TRIPLES      21 PREDICATES      121 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12862-018-1156-7 schema:about N0f296d0046444df9854110fed81d515c
2 N0f755890c43542a2b17c25e015acfe21
3 N30d08d6cf1754a499dbd8c0def0e5160
4 N5862d6db3f0241eca657bf221db7f660
5 N69ef85c5a00d4680b536f814c7a8ea29
6 N6b70377000a9404cb3ff5d3aa39e4703
7 N762bfa0678cb44acb84567c0259f895a
8 N79e745f403be4555a4cb8054d4eb5eb1
9 N850b225a2b4649868c06ac37987802ae
10 N8d1304960ca245898a7d9f7caba81758
11 Na3b55b775b1546619a4da606868bd6b8
12 Ndeeb169753af4b2a919e1f1ef73a3b7b
13 Ne83f41f5457a4f35a964aea244f9376e
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N64bef1265bd3435d9b5a5194158e62d1
17 schema:citation sg:pub.10.1007/bf00001496
18 sg:pub.10.1007/bf00379810
19 sg:pub.10.1007/s10709-006-0003-8
20 sg:pub.10.1023/a:1011881921023
21 sg:pub.10.1038/217624a0
22 sg:pub.10.1038/hdy.2009.184
23 sg:pub.10.1038/hdy.2010.7
24 sg:pub.10.1038/nature13726
25 sg:pub.10.1038/ncomms3769
26 sg:pub.10.1038/ncomms4647
27 sg:pub.10.1038/ncomms6307
28 sg:pub.10.1038/nrg3130
29 sg:pub.10.1038/nrg3688
30 sg:pub.10.1038/nrg3803
31 sg:pub.10.1186/1471-2148-12-105
32 sg:pub.10.1186/1471-2148-12-9
33 sg:pub.10.1186/1471-2148-8-1
34 sg:pub.10.1186/1471-2148-8-340
35 sg:pub.10.1186/1741-7007-10-108
36 sg:pub.10.1186/1741-7007-11-81
37 sg:pub.10.1186/2041-9139-4-25
38 sg:pub.10.1186/2041-9139-4-26
39 sg:pub.10.1186/2041-9139-5-35
40 sg:pub.10.1186/s12862-016-0716-y
41 sg:pub.10.1186/s12915-015-0223-4
42 sg:pub.10.1186/s13227-017-0086-6
43 https://app.dimensions.ai/details/publication/pub.1077358436
44 https://app.dimensions.ai/details/publication/pub.1080617744
45 https://app.dimensions.ai/details/publication/pub.1083123762
46 https://doi.org/10.1002/dneu.22239
47 https://doi.org/10.1002/dvdy.22144
48 https://doi.org/10.1016/0014-5793(93)81673-n
49 https://doi.org/10.1016/0040-5809(74)90064-1
50 https://doi.org/10.1016/bs.adgen.2016.03.001
51 https://doi.org/10.1016/j.cbpa.2010.03.030
52 https://doi.org/10.1016/j.cub.2010.07.017
53 https://doi.org/10.1016/j.cub.2011.03.020
54 https://doi.org/10.1016/j.cub.2012.10.044
55 https://doi.org/10.1016/j.cub.2017.02.048
56 https://doi.org/10.1016/j.ydbio.2009.03.003
57 https://doi.org/10.1016/j.ympev.2004.07.001
58 https://doi.org/10.1016/j.ympev.2011.03.009
59 https://doi.org/10.1016/j.ympev.2011.09.005
60 https://doi.org/10.1016/j.ympev.2014.06.029
61 https://doi.org/10.1046/j.1365-2052.1998.295359.x
62 https://doi.org/10.1046/j.1365-294x.2003.01753.x
63 https://doi.org/10.1073/pnas.081068098
64 https://doi.org/10.1073/pnas.1510802112
65 https://doi.org/10.1073/pnas.87.23.9315
66 https://doi.org/10.1093/bioinformatics/btp324
67 https://doi.org/10.1093/molbev/msp296
68 https://doi.org/10.1093/molbev/mst136
69 https://doi.org/10.1093/nar/gks1236
70 https://doi.org/10.1093/oxfordjournals.molbev.a004100
71 https://doi.org/10.1093/oxfordjournals.molbev.a040233
72 https://doi.org/10.1101/gr.107524.110
73 https://doi.org/10.1111/j.1095-8312.2003.00230.x
74 https://doi.org/10.1111/j.1365-294x.2010.04952.x
75 https://doi.org/10.1111/j.1365-294x.2011.05377.x
76 https://doi.org/10.1111/j.1439-0469.1991.tb00673.x
77 https://doi.org/10.1111/j.1525-142x.2008.00235.x
78 https://doi.org/10.1111/j.1558-5646.1972.tb00170.x
79 https://doi.org/10.1111/j.1558-5646.2012.01822.x
80 https://doi.org/10.1126/science.1240276
81 https://doi.org/10.1126/science.134.3489.1501
82 https://doi.org/10.1126/science.273.5278.1091
83 https://doi.org/10.1146/annurev-ecolsys-102209-144621
84 https://doi.org/10.1146/annurev-ecolsys-102209-144644
85 https://doi.org/10.1146/annurev-genet-102108-134216
86 https://doi.org/10.1159/000115853
87 https://doi.org/10.1159/000341403
88 https://doi.org/10.1371/journal.pbio.1001142
89 https://doi.org/10.1371/journal.pgen.1000862
90 https://doi.org/10.1371/journal.pone.0053553
91 https://doi.org/10.1371/journal.pone.0057281
92 https://doi.org/10.1371/journal.pone.0107877
93 https://doi.org/10.1371/journal.pone.0119370
94 https://doi.org/10.1534/genetics.103.024182
95 https://doi.org/10.5038/1827-806x.16.1.4
96 schema:datePublished 2018-12
97 schema:datePublishedReg 2018-12-01
98 schema:description BACKGROUND: Cavefish populations belonging to the Mexican tetra species Astyanax mexicanus are outstanding models to study the tempo and mode of adaptation to a radical environmental change. They are currently assigned to two main groups, the so-called "old" and "new" lineages, which would have populated several caves independently and at different times. However, we do not have yet accurate estimations of the time frames of evolution of these populations. RESULTS: We reanalyzed the geographic distribution of mitochondrial and nuclear DNA polymorphisms and we found that these data do not support the existence of two cavefish lineages. Using IMa2, a program that allows dating population divergence in addition to demographic parameters, we found that microsatellite polymorphism strongly supports a very recent origin of cave populations (< 20,000 years). We identified a large number of single-nucleotide polymorphisms (SNPs) in transcript sequences of pools of embryos (Pool-seq) belonging to Pachón cave population and a surface population from Texas. Based on summary statistics that can be computed with this SNP data set together with simulations of evolution of SNP polymorphisms in two recently isolated populations, we looked for sets of demographic parameters that allow the computation of summary statistics with simulated populations that are similar to the ones with the sampled populations. In most simulations for which we could find a good fit between the summary statistics of observed and simulated data, the best fit occurred when the divergence between simulated populations was less than 30,000 years. CONCLUSIONS: Although it is often assumed that some cave populations have a very ancient origin, a recent origin of these populations is strongly supported by our analyses of independent sets of nuclear DNA polymorphism. Moreover, the observation of two divergent haplogroups of mitochondrial and nuclear genes with different geographic distributions support a recent admixture of two divergent surface populations, before the isolation of cave populations. If cave populations are indeed only several thousand years old, many phenotypic changes observed in cavefish would thus have mainly involved the fixation of genetic variants present in surface fish populations and within a very short period of time.
99 schema:genre research_article
100 schema:inLanguage en
101 schema:isAccessibleForFree true
102 schema:isPartOf N1a0e8a1b45cd40d8a106cb78435944af
103 N43993d79ebe54833bdd13ba298cf6638
104 sg:journal.1024249
105 schema:name Evidence for late Pleistocene origin of Astyanax mexicanus cavefish
106 schema:pagination 43
107 schema:productId N230ca16459894e88bcfcfc2b6bd395f7
108 N4db5b032917e469e8710e6d4c4ddcafa
109 N6ede0959fcd44fd18f59ac3580a3aad1
110 Na3189f5438524264911830071393d0ca
111 Nf745525fbefc4a72967f9971115e1959
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103308719
113 https://doi.org/10.1186/s12862-018-1156-7
114 schema:sdDatePublished 2019-04-11T09:40
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher Nfc7e06e82f7341c5acafd1a6ac00a3b3
117 schema:url https://link.springer.com/10.1186%2Fs12862-018-1156-7
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N0f296d0046444df9854110fed81d515c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name DNA, Mitochondrial
123 rdf:type schema:DefinedTerm
124 N0f755890c43542a2b17c25e015acfe21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Genetic Variation
126 rdf:type schema:DefinedTerm
127 N1a0e8a1b45cd40d8a106cb78435944af schema:issueNumber 1
128 rdf:type schema:PublicationIssue
129 N230ca16459894e88bcfcfc2b6bd395f7 schema:name doi
130 schema:value 10.1186/s12862-018-1156-7
131 rdf:type schema:PropertyValue
132 N2cb07c8aea4349609b15e1bd2449569f rdf:first sg:person.01005477724.41
133 rdf:rest N3313431a7be04d91a5f50db2c2473b36
134 N30d08d6cf1754a499dbd8c0def0e5160 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Evolution, Molecular
136 rdf:type schema:DefinedTerm
137 N3313431a7be04d91a5f50db2c2473b36 rdf:first sg:person.01104126206.07
138 rdf:rest Nb40e5896d54c4061a115929a7a958707
139 N43993d79ebe54833bdd13ba298cf6638 schema:volumeNumber 18
140 rdf:type schema:PublicationVolume
141 N4db5b032917e469e8710e6d4c4ddcafa schema:name nlm_unique_id
142 schema:value 100966975
143 rdf:type schema:PropertyValue
144 N5862d6db3f0241eca657bf221db7f660 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Caves
146 rdf:type schema:DefinedTerm
147 N64bef1265bd3435d9b5a5194158e62d1 rdf:first sg:person.01265033755.05
148 rdf:rest Na02efb48eb754ffdae8eac41d011e692
149 N69ef85c5a00d4680b536f814c7a8ea29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name New Mexico
151 rdf:type schema:DefinedTerm
152 N6b70377000a9404cb3ff5d3aa39e4703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Mexico
154 rdf:type schema:DefinedTerm
155 N6ede0959fcd44fd18f59ac3580a3aad1 schema:name readcube_id
156 schema:value 20e5e56b5b5d354b1a89fb99732585cdc1e963b5f38b6a666a81c96459a95035
157 rdf:type schema:PropertyValue
158 N762bfa0678cb44acb84567c0259f895a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Phylogeny
160 rdf:type schema:DefinedTerm
161 N79e745f403be4555a4cb8054d4eb5eb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Animals
163 rdf:type schema:DefinedTerm
164 N850b225a2b4649868c06ac37987802ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Characidae
166 rdf:type schema:DefinedTerm
167 N8d1304960ca245898a7d9f7caba81758 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Texas
169 rdf:type schema:DefinedTerm
170 Na02efb48eb754ffdae8eac41d011e692 rdf:first sg:person.0774320674.77
171 rdf:rest N2cb07c8aea4349609b15e1bd2449569f
172 Na3189f5438524264911830071393d0ca schema:name pubmed_id
173 schema:value 29665771
174 rdf:type schema:PropertyValue
175 Na3b55b775b1546619a4da606868bd6b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Adaptation, Biological
177 rdf:type schema:DefinedTerm
178 Nb40e5896d54c4061a115929a7a958707 rdf:first sg:person.01341224274.16
179 rdf:rest Nb892a19fe7d74f878aa16a00553bdfa9
180 Nb892a19fe7d74f878aa16a00553bdfa9 rdf:first sg:person.0763476537.74
181 rdf:rest rdf:nil
182 Ncea9fd4986ca467798cd41bdffc17962 schema:name Plateforme Bioinformatique Toulouse, Midi-Pyrénées, UBIA, INRA, Auzeville Castanet-Tolosan, France
183 rdf:type schema:Organization
184 Ndeeb169753af4b2a919e1f1ef73a3b7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name History, Ancient
186 rdf:type schema:DefinedTerm
187 Ne83f41f5457a4f35a964aea244f9376e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Polymorphism, Single Nucleotide
189 rdf:type schema:DefinedTerm
190 Nf745525fbefc4a72967f9971115e1959 schema:name dimensions_id
191 schema:value pub.1103308719
192 rdf:type schema:PropertyValue
193 Nfc7e06e82f7341c5acafd1a6ac00a3b3 schema:name Springer Nature - SN SciGraph project
194 rdf:type schema:Organization
195 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
196 schema:name Biological Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
199 schema:name Genetics
200 rdf:type schema:DefinedTerm
201 sg:journal.1024249 schema:issn 1471-2148
202 schema:name BMC Evolutionary Biology
203 rdf:type schema:Periodical
204 sg:person.01005477724.41 schema:affiliation Ncea9fd4986ca467798cd41bdffc17962
205 schema:familyName Noirot
206 schema:givenName Céline
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005477724.41
208 rdf:type schema:Person
209 sg:person.01104126206.07 schema:affiliation https://www.grid.ac/institutes/grid.462411.4
210 schema:familyName Thermes
211 schema:givenName Claude
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104126206.07
213 rdf:type schema:Person
214 sg:person.01265033755.05 schema:affiliation https://www.grid.ac/institutes/grid.462411.4
215 schema:familyName Fumey
216 schema:givenName Julien
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265033755.05
218 rdf:type schema:Person
219 sg:person.01341224274.16 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
220 schema:familyName Rétaux
221 schema:givenName Sylvie
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341224274.16
223 rdf:type schema:Person
224 sg:person.0763476537.74 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
225 schema:familyName Casane
226 schema:givenName Didier
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763476537.74
228 rdf:type schema:Person
229 sg:person.0774320674.77 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
230 schema:familyName Hinaux
231 schema:givenName Hélène
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774320674.77
233 rdf:type schema:Person
234 sg:pub.10.1007/bf00001496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036969700
235 https://doi.org/10.1007/bf00001496
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/bf00379810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020974926
238 https://doi.org/10.1007/bf00379810
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s10709-006-0003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004962779
241 https://doi.org/10.1007/s10709-006-0003-8
242 rdf:type schema:CreativeWork
243 sg:pub.10.1023/a:1011881921023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007070988
244 https://doi.org/10.1023/a:1011881921023
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/217624a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698058
247 https://doi.org/10.1038/217624a0
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/hdy.2009.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038648775
250 https://doi.org/10.1038/hdy.2009.184
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/hdy.2010.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020595237
253 https://doi.org/10.1038/hdy.2010.7
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/nature13726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019878292
256 https://doi.org/10.1038/nature13726
257 rdf:type schema:CreativeWork
258 sg:pub.10.1038/ncomms3769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041545486
259 https://doi.org/10.1038/ncomms3769
260 rdf:type schema:CreativeWork
261 sg:pub.10.1038/ncomms4647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009528768
262 https://doi.org/10.1038/ncomms4647
263 rdf:type schema:CreativeWork
264 sg:pub.10.1038/ncomms6307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044917208
265 https://doi.org/10.1038/ncomms6307
266 rdf:type schema:CreativeWork
267 sg:pub.10.1038/nrg3130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035741028
268 https://doi.org/10.1038/nrg3130
269 rdf:type schema:CreativeWork
270 sg:pub.10.1038/nrg3688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049383016
271 https://doi.org/10.1038/nrg3688
272 rdf:type schema:CreativeWork
273 sg:pub.10.1038/nrg3803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045018123
274 https://doi.org/10.1038/nrg3803
275 rdf:type schema:CreativeWork
276 sg:pub.10.1186/1471-2148-12-105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031070101
277 https://doi.org/10.1186/1471-2148-12-105
278 rdf:type schema:CreativeWork
279 sg:pub.10.1186/1471-2148-12-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015275049
280 https://doi.org/10.1186/1471-2148-12-9
281 rdf:type schema:CreativeWork
282 sg:pub.10.1186/1471-2148-8-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017941480
283 https://doi.org/10.1186/1471-2148-8-1
284 rdf:type schema:CreativeWork
285 sg:pub.10.1186/1471-2148-8-340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032468470
286 https://doi.org/10.1186/1471-2148-8-340
287 rdf:type schema:CreativeWork
288 sg:pub.10.1186/1741-7007-10-108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014647299
289 https://doi.org/10.1186/1741-7007-10-108
290 rdf:type schema:CreativeWork
291 sg:pub.10.1186/1741-7007-11-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005995462
292 https://doi.org/10.1186/1741-7007-11-81
293 rdf:type schema:CreativeWork
294 sg:pub.10.1186/2041-9139-4-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048036861
295 https://doi.org/10.1186/2041-9139-4-25
296 rdf:type schema:CreativeWork
297 sg:pub.10.1186/2041-9139-4-26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035755269
298 https://doi.org/10.1186/2041-9139-4-26
299 rdf:type schema:CreativeWork
300 sg:pub.10.1186/2041-9139-5-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017947399
301 https://doi.org/10.1186/2041-9139-5-35
302 rdf:type schema:CreativeWork
303 sg:pub.10.1186/s12862-016-0716-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024676113
304 https://doi.org/10.1186/s12862-016-0716-y
305 rdf:type schema:CreativeWork
306 sg:pub.10.1186/s12915-015-0223-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026992084
307 https://doi.org/10.1186/s12915-015-0223-4
308 rdf:type schema:CreativeWork
309 sg:pub.10.1186/s13227-017-0086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093094988
310 https://doi.org/10.1186/s13227-017-0086-6
311 rdf:type schema:CreativeWork
312 https://app.dimensions.ai/details/publication/pub.1077358436 schema:CreativeWork
313 https://app.dimensions.ai/details/publication/pub.1080617744 schema:CreativeWork
314 https://app.dimensions.ai/details/publication/pub.1083123762 schema:CreativeWork
315 https://doi.org/10.1002/dneu.22239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003498034
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1002/dvdy.22144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042349921
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1016/0014-5793(93)81673-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1006571327
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1016/0040-5809(74)90064-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052772378
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1016/bs.adgen.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012728052
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1016/j.cbpa.2010.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037657585
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1016/j.cub.2010.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005668171
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1016/j.cub.2011.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037511761
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1016/j.cub.2012.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047618879
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1016/j.cub.2017.02.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084512496
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1016/j.ydbio.2009.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000651550
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1016/j.ympev.2004.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043516865
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1016/j.ympev.2011.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005496653
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1016/j.ympev.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015091182
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1016/j.ympev.2014.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011392921
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1046/j.1365-2052.1998.295359.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023726020
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1046/j.1365-294x.2003.01753.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009531663
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1073/pnas.081068098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048901100
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1073/pnas.1510802112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016069679
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1073/pnas.87.23.9315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025386162
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1093/molbev/msp296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016140693
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1093/molbev/mst136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039353393
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1093/nar/gks1236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009297609
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1093/oxfordjournals.molbev.a004100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000018925
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1093/oxfordjournals.molbev.a040233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082454016
366 rdf:type schema:CreativeWork
367 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
368 rdf:type schema:CreativeWork
369 https://doi.org/10.1111/j.1095-8312.2003.00230.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048410865
370 rdf:type schema:CreativeWork
371 https://doi.org/10.1111/j.1365-294x.2010.04952.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025902374
372 rdf:type schema:CreativeWork
373 https://doi.org/10.1111/j.1365-294x.2011.05377.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016225631
374 rdf:type schema:CreativeWork
375 https://doi.org/10.1111/j.1439-0469.1991.tb00673.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050038175
376 rdf:type schema:CreativeWork
377 https://doi.org/10.1111/j.1525-142x.2008.00235.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009302336
378 rdf:type schema:CreativeWork
379 https://doi.org/10.1111/j.1558-5646.1972.tb00170.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085715161
380 rdf:type schema:CreativeWork
381 https://doi.org/10.1111/j.1558-5646.2012.01822.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027135366
382 rdf:type schema:CreativeWork
383 https://doi.org/10.1126/science.1240276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006742559
384 rdf:type schema:CreativeWork
385 https://doi.org/10.1126/science.134.3489.1501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062476600
386 rdf:type schema:CreativeWork
387 https://doi.org/10.1126/science.273.5278.1091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553944
388 rdf:type schema:CreativeWork
389 https://doi.org/10.1146/annurev-ecolsys-102209-144621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013206215
390 rdf:type schema:CreativeWork
391 https://doi.org/10.1146/annurev-ecolsys-102209-144644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033153482
392 rdf:type schema:CreativeWork
393 https://doi.org/10.1146/annurev-genet-102108-134216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015613735
394 rdf:type schema:CreativeWork
395 https://doi.org/10.1159/000115853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007572831
396 rdf:type schema:CreativeWork
397 https://doi.org/10.1159/000341403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030422016
398 rdf:type schema:CreativeWork
399 https://doi.org/10.1371/journal.pbio.1001142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040898412
400 rdf:type schema:CreativeWork
401 https://doi.org/10.1371/journal.pgen.1000862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049211009
402 rdf:type schema:CreativeWork
403 https://doi.org/10.1371/journal.pone.0053553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008806599
404 rdf:type schema:CreativeWork
405 https://doi.org/10.1371/journal.pone.0057281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022615323
406 rdf:type schema:CreativeWork
407 https://doi.org/10.1371/journal.pone.0107877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023605437
408 rdf:type schema:CreativeWork
409 https://doi.org/10.1371/journal.pone.0119370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045423367
410 rdf:type schema:CreativeWork
411 https://doi.org/10.1534/genetics.103.024182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006289441
412 rdf:type schema:CreativeWork
413 https://doi.org/10.5038/1827-806x.16.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072563304
414 rdf:type schema:CreativeWork
415 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
416 schema:name DECA group, Paris-Saclay Institute of Neuroscience, UMR 9197, CNRS, Gif sur Yvette, France
417 rdf:type schema:Organization
418 https://www.grid.ac/institutes/grid.462411.4 schema:alternateName Institute of Integrative Biology of the Cell
419 schema:name Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, F-91198, Paris, France
420 Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
421 rdf:type schema:Organization
422 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
423 schema:name Université Paris Diderot, Sorbonne Paris Cité, Paris, France
424 Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
425 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...