The impact of migratory flyways on the spread of avian influenza virus in North America View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-25

AUTHORS

Mathieu Fourment, Aaron E. Darling, Edward C. Holmes

ABSTRACT

BackgroundWild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and across continents is therefore critical to the development of successful strategies to manage and reduce the impact of influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian flyways in shaping the genetic structure of AIV populations remains uncertain.ResultsTo assess the relative contribution of bird migration along flyways to the genetic structure of AIV we performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models, depicting a more complete picture of the migration network than determined previously.ConclusionsBased on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in turn allowing the development of improved programs for surveillance and risk assessment. More... »

PAGES

118

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12862-017-0965-4

DOI

http://dx.doi.org/10.1186/s12862-017-0965-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085596004

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28545432


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animal Migration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals, Wild", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Birds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Canada", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Outbreaks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Influenza A virus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Influenza in Birds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "ithree institute, University of Technology Sydney, Sydney, Australia", 
            "Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fourment", 
        "givenName": "Mathieu", 
        "id": "sg:person.01257106550.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257106550.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ithree institute, University of Technology Sydney, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "ithree institute, University of Technology Sydney, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Darling", 
        "givenName": "Aaron E.", 
        "id": "sg:person.01146663200.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146663200.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holmes", 
        "givenName": "Edward C.", 
        "id": "sg:person.012501436222.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012501436222.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/82_2014_396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048259292", 
          "https://doi.org/10.1007/82_2014_396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13104-016-1927-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043933960", 
          "https://doi.org/10.1186/s13104-016-1927-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12862-014-0163-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036682692", 
          "https://doi.org/10.1186/s12862-014-0163-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12862-015-0410-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021210959", 
          "https://doi.org/10.1186/s12862-015-0410-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01734359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065382", 
          "https://doi.org/10.1007/bf01734359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-6-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019810976", 
          "https://doi.org/10.1186/1471-2148-6-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-25", 
    "datePublishedReg": "2017-05-25", 
    "description": "BackgroundWild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and across continents is therefore critical to the development of successful strategies to manage and reduce the impact of influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian flyways in shaping the genetic structure of AIV populations remains uncertain.ResultsTo assess the relative contribution of bird migration along flyways to the genetic structure of AIV we performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models, depicting a more complete picture of the migration network than determined previously.ConclusionsBased on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in turn allowing the development of improved programs for surveillance and risk assessment.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12862-017-0965-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6732375", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5128927", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "2730-7182"
        ], 
        "name": "BMC Ecology and Evolution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "genetic structure", 
      "large-scale phylogeographic study", 
      "nucleotide sequence data sets", 
      "seasonal migratory movements", 
      "sequence data sets", 
      "phylogeographic studies", 
      "bird species", 
      "migratory flyways", 
      "North America", 
      "bird migration", 
      "transmission of AIVs", 
      "flyway", 
      "geographic localities", 
      "migratory patterns", 
      "viral dispersal", 
      "complex spatial models", 
      "avian influenza viruses", 
      "migratory movements", 
      "human population", 
      "reservoir hosts", 
      "major reservoir host", 
      "birds", 
      "migration rate", 
      "risk assessment", 
      "key role", 
      "spatial model", 
      "phylogeny", 
      "dispersal", 
      "AIV", 
      "virus", 
      "relative contribution", 
      "species", 
      "influenza virus", 
      "valuable insights", 
      "America", 
      "complete picture", 
      "host", 
      "role", 
      "long distances", 
      "sequence", 
      "population", 
      "successful strategy", 
      "livestock", 
      "localities", 
      "impact", 
      "North-South", 
      "wide range", 
      "maintenance", 
      "migration", 
      "evolution", 
      "USA", 
      "insights", 
      "development", 
      "migration networks", 
      "data sets", 
      "ResultsTo", 
      "continent", 
      "pandemic events", 
      "structure", 
      "patterns", 
      "Canada", 
      "emergence", 
      "assessment", 
      "events", 
      "spread", 
      "turn", 
      "analysis", 
      "outbreak", 
      "distance", 
      "influenza", 
      "range", 
      "strategies", 
      "findings", 
      "opportunities", 
      "contribution", 
      "segment data", 
      "movement", 
      "study", 
      "transmission", 
      "influenza outbreaks", 
      "data", 
      "set", 
      "results", 
      "program", 
      "rate", 
      "network", 
      "model", 
      "picture", 
      "surveillance", 
      "genetic algorithm", 
      "algorithm"
    ], 
    "name": "The impact of migratory flyways on the spread of avian influenza virus in North America", 
    "pagination": "118", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085596004"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12862-017-0965-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28545432"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12862-017-0965-4", 
      "https://app.dimensions.ai/details/publication/pub.1085596004"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_754.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12862-017-0965-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-017-0965-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-017-0965-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-017-0965-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-017-0965-4'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      136 URIs      121 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12862-017-0965-4 schema:about N00ed22ad55d74da6ab2ca28812192a24
2 N405b49ee78d9486cac387597e4f862ab
3 N4f13aa159a9a4ce4b1a273ee8e760d3d
4 N70f3a14377c9422c94409f4027a6cb71
5 N72b23d7c47054ff9b884d228633b94af
6 N7f0f743524464221bce4aba22cff52ac
7 N94e0603411a9437e94d2837226b8fac6
8 N9548a3e128dc4b18abe51577411df7d1
9 Na6cf09c7f2a64f728f1ca4389f0d10aa
10 Naa6e94a51ffd45e5b64991ffbbc3e1e2
11 Nd21f6cb5b1564e4393748cc083dbfd9a
12 Ne888f616a71b4a94a7d9a74d230c71d2
13 Nf7f57bc5e1c0400c8a074db221a95c45
14 anzsrc-for:06
15 anzsrc-for:0602
16 anzsrc-for:0604
17 schema:author Nddb7228bf7fc424da362bc288ea11d3c
18 schema:citation sg:pub.10.1007/82_2014_396
19 sg:pub.10.1007/bf01734359
20 sg:pub.10.1186/1471-2148-6-1
21 sg:pub.10.1186/s12862-014-0163-6
22 sg:pub.10.1186/s12862-015-0410-5
23 sg:pub.10.1186/s13104-016-1927-4
24 schema:datePublished 2017-05-25
25 schema:datePublishedReg 2017-05-25
26 schema:description BackgroundWild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and across continents is therefore critical to the development of successful strategies to manage and reduce the impact of influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian flyways in shaping the genetic structure of AIV populations remains uncertain.ResultsTo assess the relative contribution of bird migration along flyways to the genetic structure of AIV we performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models, depicting a more complete picture of the migration network than determined previously.ConclusionsBased on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in turn allowing the development of improved programs for surveillance and risk assessment.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf Na601878bf8b8480ba5645b2478266e4f
30 Nbfe529e31c0148908e6326dbcfa4171f
31 sg:journal.1024249
32 schema:keywords AIV
33 America
34 Canada
35 North America
36 North-South
37 ResultsTo
38 USA
39 algorithm
40 analysis
41 assessment
42 avian influenza viruses
43 bird migration
44 bird species
45 birds
46 complete picture
47 complex spatial models
48 continent
49 contribution
50 data
51 data sets
52 development
53 dispersal
54 distance
55 emergence
56 events
57 evolution
58 findings
59 flyway
60 genetic algorithm
61 genetic structure
62 geographic localities
63 host
64 human population
65 impact
66 influenza
67 influenza outbreaks
68 influenza virus
69 insights
70 key role
71 large-scale phylogeographic study
72 livestock
73 localities
74 long distances
75 maintenance
76 major reservoir host
77 migration
78 migration networks
79 migration rate
80 migratory flyways
81 migratory movements
82 migratory patterns
83 model
84 movement
85 network
86 nucleotide sequence data sets
87 opportunities
88 outbreak
89 pandemic events
90 patterns
91 phylogeny
92 phylogeographic studies
93 picture
94 population
95 program
96 range
97 rate
98 relative contribution
99 reservoir hosts
100 results
101 risk assessment
102 role
103 seasonal migratory movements
104 segment data
105 sequence
106 sequence data sets
107 set
108 spatial model
109 species
110 spread
111 strategies
112 structure
113 study
114 successful strategy
115 surveillance
116 transmission
117 transmission of AIVs
118 turn
119 valuable insights
120 viral dispersal
121 virus
122 wide range
123 schema:name The impact of migratory flyways on the spread of avian influenza virus in North America
124 schema:pagination 118
125 schema:productId N69d3acab71064702aef8821181430a11
126 N81b10cab4b8947dfaeffd0c85a1f9d82
127 Nd4e8ab1876ba42538929f549ede18fbb
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085596004
129 https://doi.org/10.1186/s12862-017-0965-4
130 schema:sdDatePublished 2022-09-02T16:01
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher N77efcfbcd7a24d4c8c4c05e9231c00e1
133 schema:url https://doi.org/10.1186/s12862-017-0965-4
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N00ed22ad55d74da6ab2ca28812192a24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Canada
139 rdf:type schema:DefinedTerm
140 N405b49ee78d9486cac387597e4f862ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Animals
142 rdf:type schema:DefinedTerm
143 N4f13aa159a9a4ce4b1a273ee8e760d3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Phylogeography
145 rdf:type schema:DefinedTerm
146 N69d3acab71064702aef8821181430a11 schema:name dimensions_id
147 schema:value pub.1085596004
148 rdf:type schema:PropertyValue
149 N70f3a14377c9422c94409f4027a6cb71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Likelihood Functions
151 rdf:type schema:DefinedTerm
152 N72b23d7c47054ff9b884d228633b94af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Humans
154 rdf:type schema:DefinedTerm
155 N77efcfbcd7a24d4c8c4c05e9231c00e1 schema:name Springer Nature - SN SciGraph project
156 rdf:type schema:Organization
157 N7f0f743524464221bce4aba22cff52ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Disease Outbreaks
159 rdf:type schema:DefinedTerm
160 N81b10cab4b8947dfaeffd0c85a1f9d82 schema:name doi
161 schema:value 10.1186/s12862-017-0965-4
162 rdf:type schema:PropertyValue
163 N94e0603411a9437e94d2837226b8fac6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name United States
165 rdf:type schema:DefinedTerm
166 N9548a3e128dc4b18abe51577411df7d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Phylogeny
168 rdf:type schema:DefinedTerm
169 Na601878bf8b8480ba5645b2478266e4f schema:issueNumber 1
170 rdf:type schema:PublicationIssue
171 Na6cf09c7f2a64f728f1ca4389f0d10aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Birds
173 rdf:type schema:DefinedTerm
174 Naa6e94a51ffd45e5b64991ffbbc3e1e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Animals, Wild
176 rdf:type schema:DefinedTerm
177 Nbfe529e31c0148908e6326dbcfa4171f schema:volumeNumber 17
178 rdf:type schema:PublicationVolume
179 Nd21f6cb5b1564e4393748cc083dbfd9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Animal Migration
181 rdf:type schema:DefinedTerm
182 Nd4e8ab1876ba42538929f549ede18fbb schema:name pubmed_id
183 schema:value 28545432
184 rdf:type schema:PropertyValue
185 Nddb7228bf7fc424da362bc288ea11d3c rdf:first sg:person.01257106550.52
186 rdf:rest Nf2e11aac34e3414f819f29e5b5487e52
187 Ne888f616a71b4a94a7d9a74d230c71d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Influenza in Birds
189 rdf:type schema:DefinedTerm
190 Ne9603a78869f44ad908748263cdd819c rdf:first sg:person.012501436222.04
191 rdf:rest rdf:nil
192 Nf2e11aac34e3414f819f29e5b5487e52 rdf:first sg:person.01146663200.05
193 rdf:rest Ne9603a78869f44ad908748263cdd819c
194 Nf7f57bc5e1c0400c8a074db221a95c45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Influenza A virus
196 rdf:type schema:DefinedTerm
197 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
198 schema:name Biological Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
201 schema:name Ecology
202 rdf:type schema:DefinedTerm
203 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
204 schema:name Genetics
205 rdf:type schema:DefinedTerm
206 sg:grant.5128927 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-017-0965-4
207 rdf:type schema:MonetaryGrant
208 sg:grant.6732375 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-017-0965-4
209 rdf:type schema:MonetaryGrant
210 sg:journal.1024249 schema:issn 2730-7182
211 schema:name BMC Ecology and Evolution
212 schema:publisher Springer Nature
213 rdf:type schema:Periodical
214 sg:person.01146663200.05 schema:affiliation grid-institutes:grid.117476.2
215 schema:familyName Darling
216 schema:givenName Aaron E.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146663200.05
218 rdf:type schema:Person
219 sg:person.012501436222.04 schema:affiliation grid-institutes:grid.1013.3
220 schema:familyName Holmes
221 schema:givenName Edward C.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012501436222.04
223 rdf:type schema:Person
224 sg:person.01257106550.52 schema:affiliation grid-institutes:grid.1013.3
225 schema:familyName Fourment
226 schema:givenName Mathieu
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257106550.52
228 rdf:type schema:Person
229 sg:pub.10.1007/82_2014_396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048259292
230 https://doi.org/10.1007/82_2014_396
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/bf01734359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065382
233 https://doi.org/10.1007/bf01734359
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1471-2148-6-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019810976
236 https://doi.org/10.1186/1471-2148-6-1
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/s12862-014-0163-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036682692
239 https://doi.org/10.1186/s12862-014-0163-6
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/s12862-015-0410-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021210959
242 https://doi.org/10.1186/s12862-015-0410-5
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/s13104-016-1927-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043933960
245 https://doi.org/10.1186/s13104-016-1927-4
246 rdf:type schema:CreativeWork
247 grid-institutes:grid.1013.3 schema:alternateName Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
248 schema:name Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
249 ithree institute, University of Technology Sydney, Sydney, Australia
250 rdf:type schema:Organization
251 grid-institutes:grid.117476.2 schema:alternateName ithree institute, University of Technology Sydney, Sydney, Australia
252 schema:name ithree institute, University of Technology Sydney, Sydney, Australia
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...