Signatures of co-evolutionary host-pathogen interactions in the genome of the entomopathogenic nematode Steinernema carpocapsae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Mitzi Flores-Ponce, Miguel Vallebueno-Estrada, Eduardo González-Orozco, Hilda E. Ramos-Aboites, J. Noé García-Chávez, Nelson Simões, Rafael Montiel

ABSTRACT

BACKGROUND: The entomopathogenic nematode Steinernema carpocapsae has been used worldwide as a biocontrol agent for insect pests, making it an interesting model for understanding parasite-host interactions. Two models propose that these interactions are co-evolutionary processes in such a way that equilibrium is never reached. In one model, known as "arms race", new alleles in relevant genes are fixed in both host and pathogens by directional positive selection, producing recurrent and alternating selective sweeps. In the other model, known as"trench warfare", persistent dynamic fluctuations in allele frequencies are sustained by balancing selection. There are some examples of genes evolving according to both models, however, it is not clear to what extent these interactions might alter genome-level evolutionary patterns and intraspecific diversity. Here we investigate some of these aspects by studying genomic variation in S. carpocapsae and other pathogenic and free-living nematodes from phylogenetic clades IV and V. RESULTS: To look for signatures of an arms-race dynamic, we conducted massive scans to detect directional positive selection in interspecific data. In free-living nematodes, we detected a significantly higher proportion of genes with sites under positive selection than in parasitic nematodes. However, in these genes, we found more enriched Gene Ontology terms in parasites. To detect possible effects of dynamic polymorphisms interactions we looked for signatures of balancing selection in intraspecific genomic data. The observed distribution of Tajima's D values in S. carpocapsae was more skewed to positive values and significantly different from the observed distribution in the free-living Caenorhabditis briggsae. Also, the proportion of significant positive values of Tajima's D was elevated in genes that were differentially expressed after induction with insect tissues as compared to both non-differentially expressed genes and the global scan. CONCLUSIONS: Our study provides a first portrait of the effects that lifestyle might have in shaping the patterns of selection at the genomic level. An arms-race between hosts and pathogens seems to be affecting specific genetic functions but not necessarily increasing the number of positively selected genes. Trench warfare dynamics seem to be acting more generally in the genome, likely focusing on genes responding to the interaction, rather than targeting specific genetic functions. More... »

PAGES

108

References to SciGraph publications

  • 2016-12. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle in SCIENTIFIC REPORTS
  • 2004-12. A transcriptomic analysis of the phylum Nematoda in NATURE GENETICS
  • 2008-12. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification in NATURE BIOTECHNOLOGY
  • 2016-09. The Perseus computational platform for comprehensive analysis of (prote)omics data in NATURE METHODS
  • 2015-12. De novo assembly of bacterial transcriptomes from RNA-seq data in GENOME BIOLOGY
  • 2016-07. Determinants of genetic diversity in NATURE REVIEWS GENETICS
  • 1998-04. Synonymous and nonsynonymous rate variation in nuclear genes of mammals in JOURNAL OF MOLECULAR EVOLUTION
  • 2015-12. Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks in GENOME BIOLOGY
  • 2016-03. The genomic basis of parasitism in the Strongyloides clade of nematodes in NATURE GENETICS
  • 2005-10. A haplotype map of the human genome in NATURE
  • 2000-11. Maximum Likelihood Estimation on Large Phylogenies and Analysis of Adaptive Evolution in Human Influenza Virus A in JOURNAL OF MOLECULAR EVOLUTION
  • 1968-02. Evolutionary Rate at the Molecular Level in NATURE
  • 2011-05. Global quantification of mammalian gene expression control in NATURE
  • 2016-12. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression in BMC GENOMICS
  • 1998-03. A molecular evolutionary framework for the phylum Nematoda in NATURE
  • 2002-12. Biological and biomedical implications of the co-evolution of pathogens and their hosts in NATURE GENETICS
  • 2012-08. jModelTest 2: more models, new heuristics and parallel computing in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12862-017-0935-x

    DOI

    http://dx.doi.org/10.1186/s12862-017-0935-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084955240

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28446150


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Frequency", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Host-Parasite Interactions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Insecta", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nematoda", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad, Unidad de Gen\u00f3mica Avanzada, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - Le\u00f3n, Irapuato, Guanajuato, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Flores-Ponce", 
            "givenName": "Mitzi", 
            "id": "sg:person.01345726004.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345726004.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad, Unidad de Gen\u00f3mica Avanzada, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - Le\u00f3n, Irapuato, Guanajuato, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vallebueno-Estrada", 
            "givenName": "Miguel", 
            "id": "sg:person.014414723251.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414723251.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad, Unidad de Gen\u00f3mica Avanzada, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - Le\u00f3n, Irapuato, Guanajuato, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonz\u00e1lez-Orozco", 
            "givenName": "Eduardo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad, Unidad de Gen\u00f3mica Avanzada, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - Le\u00f3n, Irapuato, Guanajuato, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ramos-Aboites", 
            "givenName": "Hilda E.", 
            "id": "sg:person.0660146705.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660146705.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad, Unidad de Gen\u00f3mica Avanzada, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - Le\u00f3n, Irapuato, Guanajuato, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda-Ch\u00e1vez", 
            "givenName": "J. No\u00e9", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of the Azores", 
              "id": "https://www.grid.ac/institutes/grid.7338.f", 
              "name": [
                "CIRN/Departamento de Biologia, Universidade dos A\u00e7ores, Rua M\u00e3e de Deus, 13, 9500-321, Ponta Delgada, S. Miguel - A\u00e7ores, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sim\u00f5es", 
            "givenName": "Nelson", 
            "id": "sg:person.0702144005.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702144005.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Laboratorio Nacional de Gen\u00f3mica para la Biodiversidad, Unidad de Gen\u00f3mica Avanzada, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - Le\u00f3n, Irapuato, Guanajuato, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Montiel", 
            "givenName": "Rafael", 
            "id": "sg:person.01350336325.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350336325.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a004148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000201411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1224503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000505228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2005.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000514808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004110799", 
              "https://doi.org/10.1038/ng1472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004110799", 
              "https://doi.org/10.1038/ng1472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004184092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006001436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep37536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006334236", 
              "https://doi.org/10.1038/srep37536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.3.502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007526298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007540814", 
              "https://doi.org/10.1038/nmeth.2109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007683223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/iai.02740-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007999226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddm143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008125111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0746-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010025914", 
              "https://doi.org/10.1186/s13059-015-0746-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011689081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0031182014000791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013419603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.meegid.2009.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014221241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mib.2007.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014822166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0000045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014837158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015222384", 
              "https://doi.org/10.1038/ng.3495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/32160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018293812", 
              "https://doi.org/10.1038/32160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/32160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018293812", 
              "https://doi.org/10.1038/32160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018404011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/mcp.m113.031591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019972763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msm088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020427894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0572-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020717956", 
              "https://doi.org/10.1186/s13059-014-0572-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0572-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020717956", 
              "https://doi.org/10.1186/s13059-014-0572-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msl044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022399761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genet.39.073003.112420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022487418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022622903", 
              "https://doi.org/10.1038/nrg.2016.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022904685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0020-7519(99)00153-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025610245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msi237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027505844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002390010105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027857979", 
              "https://doi.org/10.1007/s002390010105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031126683", 
              "https://doi.org/10.1007/pl00006320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031126683", 
              "https://doi.org/10.1007/pl00006320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032398342", 
              "https://doi.org/10.1038/nmeth.3901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.187237.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033569319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033777014", 
              "https://doi.org/10.1038/nature10098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msh252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034888463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037148423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217624a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037698058", 
              "https://doi.org/10.1038/217624a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217624a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037698058", 
              "https://doi.org/10.1038/217624a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038956928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2684-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040316281", 
              "https://doi.org/10.1186/s12864-016-2684-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040924486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041309983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/22.22.4673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042438223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msu141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049340097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049469421", 
              "https://doi.org/10.1038/nbt.1511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1202-569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050075068", 
              "https://doi.org/10.1038/ng1202-569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1202-569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050075068", 
              "https://doi.org/10.1038/ng1202-569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1202-569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050075068", 
              "https://doi.org/10.1038/ng1202-569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chom.2011.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051744588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-genom-082908-150129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052204003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1364-3703.2007.00461.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052564161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10635150390235520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058369386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/bblv223n1p85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058871979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059414463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.164.3881.788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062497053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1895/wormbook.1.15.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068724136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074647597", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077957625", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078957195", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1079/9780851995670.0057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089224108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1079/9780851995670.0000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109469785"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: The entomopathogenic nematode Steinernema carpocapsae has been used worldwide as a biocontrol agent for insect pests, making it an interesting model for understanding parasite-host interactions. Two models propose that these interactions are co-evolutionary processes in such a way that equilibrium is never reached. In one model, known as \"arms race\", new alleles in relevant genes are fixed in both host and pathogens by directional positive selection, producing recurrent and alternating selective sweeps. In the other model, known as\"trench warfare\", persistent dynamic fluctuations in allele frequencies are sustained by balancing selection. There are some examples of genes evolving according to both models, however, it is not clear to what extent these interactions might alter genome-level evolutionary patterns and intraspecific diversity. Here we investigate some of these aspects by studying genomic variation in S. carpocapsae and other pathogenic and free-living nematodes from phylogenetic clades IV and V.\nRESULTS: To look for signatures of an arms-race dynamic, we conducted massive scans to detect directional positive selection in interspecific data. In free-living nematodes, we detected a significantly higher proportion of genes with sites under positive selection than in parasitic nematodes. However, in these genes, we found more enriched Gene Ontology terms in parasites. To detect possible effects of dynamic polymorphisms interactions we looked for signatures of balancing selection in intraspecific genomic data. The observed distribution of Tajima's D values in S. carpocapsae was more skewed to positive values and significantly different from the observed distribution in the free-living Caenorhabditis briggsae. Also, the proportion of significant positive values of Tajima's D was elevated in genes that were differentially expressed after induction with insect tissues as compared to both non-differentially expressed genes and the global scan.\nCONCLUSIONS: Our study provides a first portrait of the effects that lifestyle might have in shaping the patterns of selection at the genomic level. An arms-race between hosts and pathogens seems to be affecting specific genetic functions but not necessarily increasing the number of positively selected genes. Trench warfare dynamics seem to be acting more generally in the genome, likely focusing on genes responding to the interaction, rather than targeting specific genetic functions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12862-017-0935-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3799604", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1024249", 
            "issn": [
              "1471-2148"
            ], 
            "name": "BMC Evolutionary Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Signatures of co-evolutionary host-pathogen interactions in the genome of the entomopathogenic nematode Steinernema carpocapsae", 
        "pagination": "108", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7c80dde80c8f52faf997f6fb4a1c928b4a45358bd1afa4370713b9a3d655722b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28446150"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100966975"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12862-017-0935-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084955240"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12862-017-0935-x", 
          "https://app.dimensions.ai/details/publication/pub.1084955240"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89812_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12862-017-0935-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-017-0935-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-017-0935-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-017-0935-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-017-0935-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    349 TRIPLES      21 PREDICATES      100 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12862-017-0935-x schema:about N04587ea5d0e9445b8272e479be9a980f
    2 N09335d8cb51840ad92bd8bef9c247394
    3 N0975b58d90b64a17aa39665a62a8c29c
    4 N32865a295def4ef69d2bdfb92361306c
    5 N41c660821c2e4d2bb0486e535b433740
    6 N504717fe96f4414a87366272837e3b42
    7 Nb434ac5ad14d4fa0a35803cae922835d
    8 Nbae2b24a79dc422290302386ddaa4c23
    9 Nc0acca2de6e343a7be6633f22cde860e
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author N5a9fa1c7ee0d411686db522133ede8df
    13 schema:citation sg:pub.10.1007/pl00006320
    14 sg:pub.10.1007/s002390010105
    15 sg:pub.10.1038/217624a0
    16 sg:pub.10.1038/32160
    17 sg:pub.10.1038/nature04226
    18 sg:pub.10.1038/nature10098
    19 sg:pub.10.1038/nbt.1511
    20 sg:pub.10.1038/ng.3495
    21 sg:pub.10.1038/ng1202-569
    22 sg:pub.10.1038/ng1472
    23 sg:pub.10.1038/nmeth.2109
    24 sg:pub.10.1038/nmeth.3901
    25 sg:pub.10.1038/nrg.2016.58
    26 sg:pub.10.1038/srep37536
    27 sg:pub.10.1186/s12864-016-2684-4
    28 sg:pub.10.1186/s13059-014-0572-2
    29 sg:pub.10.1186/s13059-015-0746-6
    30 https://app.dimensions.ai/details/publication/pub.1074647597
    31 https://app.dimensions.ai/details/publication/pub.1077957625
    32 https://app.dimensions.ai/details/publication/pub.1078957195
    33 https://doi.org/10.1016/j.chom.2011.04.011
    34 https://doi.org/10.1016/j.meegid.2009.03.010
    35 https://doi.org/10.1016/j.mib.2007.05.006
    36 https://doi.org/10.1016/j.tig.2005.08.003
    37 https://doi.org/10.1016/s0020-7519(99)00153-8
    38 https://doi.org/10.1017/s0031182014000791
    39 https://doi.org/10.1074/mcp.m113.031591
    40 https://doi.org/10.1079/9780851995670.0000
    41 https://doi.org/10.1079/9780851995670.0057
    42 https://doi.org/10.1080/10635150390235520
    43 https://doi.org/10.1086/bblv223n1p85
    44 https://doi.org/10.1093/bioinformatics/18.3.502
    45 https://doi.org/10.1093/bioinformatics/bti610
    46 https://doi.org/10.1093/bioinformatics/btm404
    47 https://doi.org/10.1093/bioinformatics/btp324
    48 https://doi.org/10.1093/bioinformatics/btp352
    49 https://doi.org/10.1093/bioinformatics/btr088
    50 https://doi.org/10.1093/bioinformatics/btr330
    51 https://doi.org/10.1093/bioinformatics/btr509
    52 https://doi.org/10.1093/bioinformatics/btv493
    53 https://doi.org/10.1093/hmg/ddm143
    54 https://doi.org/10.1093/molbev/msh252
    55 https://doi.org/10.1093/molbev/msi237
    56 https://doi.org/10.1093/molbev/msl044
    57 https://doi.org/10.1093/molbev/msm088
    58 https://doi.org/10.1093/molbev/msu141
    59 https://doi.org/10.1093/nar/22.22.4673
    60 https://doi.org/10.1093/nar/gkg609
    61 https://doi.org/10.1093/nar/gkp952
    62 https://doi.org/10.1093/oxfordjournals.molbev.a004148
    63 https://doi.org/10.1093/oxfordjournals.molbev.a025957
    64 https://doi.org/10.1093/oxfordjournals.molbev.a026334
    65 https://doi.org/10.1101/gr.1224503
    66 https://doi.org/10.1101/gr.187237.114
    67 https://doi.org/10.1111/j.1364-3703.2007.00461.x
    68 https://doi.org/10.1126/science.164.3881.788
    69 https://doi.org/10.1128/iai.02740-14
    70 https://doi.org/10.1146/annurev-genom-082908-150129
    71 https://doi.org/10.1146/annurev.genet.39.073003.112420
    72 https://doi.org/10.1371/journal.pbio.0000045
    73 https://doi.org/10.1371/journal.pgen.1000144
    74 https://doi.org/10.1895/wormbook.1.15.1
    75 schema:datePublished 2017-12
    76 schema:datePublishedReg 2017-12-01
    77 schema:description BACKGROUND: The entomopathogenic nematode Steinernema carpocapsae has been used worldwide as a biocontrol agent for insect pests, making it an interesting model for understanding parasite-host interactions. Two models propose that these interactions are co-evolutionary processes in such a way that equilibrium is never reached. In one model, known as "arms race", new alleles in relevant genes are fixed in both host and pathogens by directional positive selection, producing recurrent and alternating selective sweeps. In the other model, known as"trench warfare", persistent dynamic fluctuations in allele frequencies are sustained by balancing selection. There are some examples of genes evolving according to both models, however, it is not clear to what extent these interactions might alter genome-level evolutionary patterns and intraspecific diversity. Here we investigate some of these aspects by studying genomic variation in S. carpocapsae and other pathogenic and free-living nematodes from phylogenetic clades IV and V. RESULTS: To look for signatures of an arms-race dynamic, we conducted massive scans to detect directional positive selection in interspecific data. In free-living nematodes, we detected a significantly higher proportion of genes with sites under positive selection than in parasitic nematodes. However, in these genes, we found more enriched Gene Ontology terms in parasites. To detect possible effects of dynamic polymorphisms interactions we looked for signatures of balancing selection in intraspecific genomic data. The observed distribution of Tajima's D values in S. carpocapsae was more skewed to positive values and significantly different from the observed distribution in the free-living Caenorhabditis briggsae. Also, the proportion of significant positive values of Tajima's D was elevated in genes that were differentially expressed after induction with insect tissues as compared to both non-differentially expressed genes and the global scan. CONCLUSIONS: Our study provides a first portrait of the effects that lifestyle might have in shaping the patterns of selection at the genomic level. An arms-race between hosts and pathogens seems to be affecting specific genetic functions but not necessarily increasing the number of positively selected genes. Trench warfare dynamics seem to be acting more generally in the genome, likely focusing on genes responding to the interaction, rather than targeting specific genetic functions.
    78 schema:genre research_article
    79 schema:inLanguage en
    80 schema:isAccessibleForFree true
    81 schema:isPartOf Nb2c5a6bb2e5944cb87a6d18564f58ed5
    82 Nc8f842e07a134ae392cc23a0ae8f116e
    83 sg:journal.1024249
    84 schema:name Signatures of co-evolutionary host-pathogen interactions in the genome of the entomopathogenic nematode Steinernema carpocapsae
    85 schema:pagination 108
    86 schema:productId N0efa6203445f40659d5b8d98d8877ea3
    87 N27806bfe0b844de9ba028a0ded487b7f
    88 N7629eb03b04d4f56a4bdecdd14b6efc3
    89 Nabdbc772a333453c811fc444e36b63f9
    90 Ne8301da6b8c244c188ea512cedcf9ad6
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084955240
    92 https://doi.org/10.1186/s12862-017-0935-x
    93 schema:sdDatePublished 2019-04-11T09:58
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N5ce506324a894a1f8b73d85d884f912c
    96 schema:url https://link.springer.com/10.1186%2Fs12862-017-0935-x
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N04587ea5d0e9445b8272e479be9a980f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Caenorhabditis
    102 rdf:type schema:DefinedTerm
    103 N09045167095b4f46b423f2fb8cbcd02c rdf:first N0a4b99fbb18944438c7270a836c57077
    104 rdf:rest N80e566a1bd5048edabff21471f0c2d4d
    105 N09335d8cb51840ad92bd8bef9c247394 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Gene Frequency
    107 rdf:type schema:DefinedTerm
    108 N0975b58d90b64a17aa39665a62a8c29c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Biological Evolution
    110 rdf:type schema:DefinedTerm
    111 N0a4b99fbb18944438c7270a836c57077 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    112 schema:familyName García-Chávez
    113 schema:givenName J. Noé
    114 rdf:type schema:Person
    115 N0efa6203445f40659d5b8d98d8877ea3 schema:name readcube_id
    116 schema:value 7c80dde80c8f52faf997f6fb4a1c928b4a45358bd1afa4370713b9a3d655722b
    117 rdf:type schema:PropertyValue
    118 N1ba38cc14dea4f9ca365b5b11de890eb rdf:first sg:person.0660146705.67
    119 rdf:rest N09045167095b4f46b423f2fb8cbcd02c
    120 N27806bfe0b844de9ba028a0ded487b7f schema:name doi
    121 schema:value 10.1186/s12862-017-0935-x
    122 rdf:type schema:PropertyValue
    123 N29c605fda86f446383e461d307d6d964 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    124 schema:familyName González-Orozco
    125 schema:givenName Eduardo
    126 rdf:type schema:Person
    127 N32865a295def4ef69d2bdfb92361306c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Insecta
    129 rdf:type schema:DefinedTerm
    130 N41c660821c2e4d2bb0486e535b433740 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Animals
    132 rdf:type schema:DefinedTerm
    133 N4f828783ed60455b878e037d2b3f661b rdf:first sg:person.01350336325.54
    134 rdf:rest rdf:nil
    135 N504717fe96f4414a87366272837e3b42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Phylogeny
    137 rdf:type schema:DefinedTerm
    138 N5a9fa1c7ee0d411686db522133ede8df rdf:first sg:person.01345726004.09
    139 rdf:rest Nef136a4db7004de287ded7bd566005c5
    140 N5ce506324a894a1f8b73d85d884f912c schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 N7629eb03b04d4f56a4bdecdd14b6efc3 schema:name pubmed_id
    143 schema:value 28446150
    144 rdf:type schema:PropertyValue
    145 N80e566a1bd5048edabff21471f0c2d4d rdf:first sg:person.0702144005.22
    146 rdf:rest N4f828783ed60455b878e037d2b3f661b
    147 N93535f05457447febd606ab8037c646e rdf:first N29c605fda86f446383e461d307d6d964
    148 rdf:rest N1ba38cc14dea4f9ca365b5b11de890eb
    149 Nabdbc772a333453c811fc444e36b63f9 schema:name nlm_unique_id
    150 schema:value 100966975
    151 rdf:type schema:PropertyValue
    152 Nb2c5a6bb2e5944cb87a6d18564f58ed5 schema:issueNumber 1
    153 rdf:type schema:PublicationIssue
    154 Nb434ac5ad14d4fa0a35803cae922835d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Nematoda
    156 rdf:type schema:DefinedTerm
    157 Nbae2b24a79dc422290302386ddaa4c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Genome
    159 rdf:type schema:DefinedTerm
    160 Nc0acca2de6e343a7be6633f22cde860e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Host-Parasite Interactions
    162 rdf:type schema:DefinedTerm
    163 Nc8f842e07a134ae392cc23a0ae8f116e schema:volumeNumber 17
    164 rdf:type schema:PublicationVolume
    165 Ne8301da6b8c244c188ea512cedcf9ad6 schema:name dimensions_id
    166 schema:value pub.1084955240
    167 rdf:type schema:PropertyValue
    168 Nef136a4db7004de287ded7bd566005c5 rdf:first sg:person.014414723251.01
    169 rdf:rest N93535f05457447febd606ab8037c646e
    170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Biological Sciences
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Genetics
    175 rdf:type schema:DefinedTerm
    176 sg:grant.3799604 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-017-0935-x
    177 rdf:type schema:MonetaryGrant
    178 sg:journal.1024249 schema:issn 1471-2148
    179 schema:name BMC Evolutionary Biology
    180 rdf:type schema:Periodical
    181 sg:person.01345726004.09 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    182 schema:familyName Flores-Ponce
    183 schema:givenName Mitzi
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345726004.09
    185 rdf:type schema:Person
    186 sg:person.01350336325.54 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    187 schema:familyName Montiel
    188 schema:givenName Rafael
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350336325.54
    190 rdf:type schema:Person
    191 sg:person.014414723251.01 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    192 schema:familyName Vallebueno-Estrada
    193 schema:givenName Miguel
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414723251.01
    195 rdf:type schema:Person
    196 sg:person.0660146705.67 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    197 schema:familyName Ramos-Aboites
    198 schema:givenName Hilda E.
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660146705.67
    200 rdf:type schema:Person
    201 sg:person.0702144005.22 schema:affiliation https://www.grid.ac/institutes/grid.7338.f
    202 schema:familyName Simões
    203 schema:givenName Nelson
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702144005.22
    205 rdf:type schema:Person
    206 sg:pub.10.1007/pl00006320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031126683
    207 https://doi.org/10.1007/pl00006320
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s002390010105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027857979
    210 https://doi.org/10.1007/s002390010105
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/217624a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698058
    213 https://doi.org/10.1038/217624a0
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/32160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018293812
    216 https://doi.org/10.1038/32160
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
    219 https://doi.org/10.1038/nature04226
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nature10098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033777014
    222 https://doi.org/10.1038/nature10098
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nbt.1511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049469421
    225 https://doi.org/10.1038/nbt.1511
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/ng.3495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222384
    228 https://doi.org/10.1038/ng.3495
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/ng1202-569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050075068
    231 https://doi.org/10.1038/ng1202-569
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ng1472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004110799
    234 https://doi.org/10.1038/ng1472
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nmeth.2109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007540814
    237 https://doi.org/10.1038/nmeth.2109
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nmeth.3901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032398342
    240 https://doi.org/10.1038/nmeth.3901
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nrg.2016.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022622903
    243 https://doi.org/10.1038/nrg.2016.58
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/srep37536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006334236
    246 https://doi.org/10.1038/srep37536
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/s12864-016-2684-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040316281
    249 https://doi.org/10.1186/s12864-016-2684-4
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1186/s13059-014-0572-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020717956
    252 https://doi.org/10.1186/s13059-014-0572-2
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/s13059-015-0746-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010025914
    255 https://doi.org/10.1186/s13059-015-0746-6
    256 rdf:type schema:CreativeWork
    257 https://app.dimensions.ai/details/publication/pub.1074647597 schema:CreativeWork
    258 https://app.dimensions.ai/details/publication/pub.1077957625 schema:CreativeWork
    259 https://app.dimensions.ai/details/publication/pub.1078957195 schema:CreativeWork
    260 https://doi.org/10.1016/j.chom.2011.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051744588
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1016/j.meegid.2009.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014221241
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1016/j.mib.2007.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014822166
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1016/j.tig.2005.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000514808
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1016/s0020-7519(99)00153-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025610245
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1017/s0031182014000791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013419603
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1074/mcp.m113.031591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019972763
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1079/9780851995670.0000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109469785
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1079/9780851995670.0057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089224108
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1080/10635150390235520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369386
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1086/bblv223n1p85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058871979
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1093/bioinformatics/18.3.502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007526298
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1093/bioinformatics/bti610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006001436
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1093/bioinformatics/btm404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007683223
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1093/bioinformatics/btr088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041309983
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1093/bioinformatics/btr509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904685
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1093/bioinformatics/btv493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414463
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1093/hmg/ddm143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008125111
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1093/molbev/msh252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034888463
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1093/molbev/msi237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027505844
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1093/molbev/msl044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022399761
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1093/molbev/msm088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020427894
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1093/molbev/msu141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049340097
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1093/nar/gkg609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004184092
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1093/nar/gkp952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040924486
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1093/oxfordjournals.molbev.a004148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000201411
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1093/oxfordjournals.molbev.a025957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011689081
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1093/oxfordjournals.molbev.a026334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037148423
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1101/gr.1224503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000505228
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1101/gr.187237.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033569319
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1111/j.1364-3703.2007.00461.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052564161
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1126/science.164.3881.788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497053
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1128/iai.02740-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007999226
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1146/annurev-genom-082908-150129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052204003
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1146/annurev.genet.39.073003.112420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022487418
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1371/journal.pbio.0000045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014837158
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1371/journal.pgen.1000144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038956928
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1895/wormbook.1.15.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068724136
    343 rdf:type schema:CreativeWork
    344 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
    345 schema:name Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
    346 rdf:type schema:Organization
    347 https://www.grid.ac/institutes/grid.7338.f schema:alternateName University of the Azores
    348 schema:name CIRN/Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 13, 9500-321, Ponta Delgada, S. Miguel - Açores, Portugal
    349 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...