Contrasting effects of historical contingency on phenotypic and genomic trajectories during a two-step evolution experiment with bacteria View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Jessica Plucain, Antonia Suau, Stéphane Cruveiller, Claudine Médigue, Dominique Schneider, Mickaël Le Gac

ABSTRACT

BACKGROUND: The impact of historical contingency, i.e. the past evolutionary history of a population, on further adaptation is mostly unknown at both the phenotypic and genomic levels. We addressed this question using a two-step evolution experiment. First, replicate populations of Escherichia coli were propagated in four different environmental conditions for 1000 generations. Then, all replicate populations were transferred and propagated for further 1000 generations to a single new environment. RESULTS: Using this two-step experimental evolution strategy, we investigated, at both the phenotypic and genomic levels, whether and how adaptation in the initial historical environments impacted evolutionary trajectories in a new environment. We showed that both the growth rate and fitness of the evolved populations obtained after the second step of evolution were contingent upon past evolutionary history. In contrast however, the genes that were modified during the second step of evolution were independent from the previous history of the populations. CONCLUSIONS: Our work suggests that historical contingency affects phenotypic adaptation to a new environment. This was however not reflected at the genomic level implying complex relationships between environmental factors and the genotype-to-phenotype map. More... »

PAGES

86

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12862-016-0662-8

DOI

http://dx.doi.org/10.1186/s12862-016-0662-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021682006

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27108090


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene-Environment Interaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "D\u00e9l\u00e9gation Alpes", 
          "id": "https://www.grid.ac/institutes/grid.457026.2", 
          "name": [
            "Univ. Grenoble Alpes, Laboratoire Technologies de l\u2019Ing\u00e9nierie M\u00e9dicale et de la Complexit\u00e9 \u2013 Informatique, Math\u00e9matiques et Applications (TIMC-IMAG), F-38000, Grenoble, France", 
            "Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plucain", 
        "givenName": "Jessica", 
        "id": "sg:person.01254304151.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254304151.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Conservatoire National des Arts et M\u00e9tiers", 
          "id": "https://www.grid.ac/institutes/grid.36823.3c", 
          "name": [
            "Univ. Grenoble Alpes, Laboratoire Technologies de l\u2019Ing\u00e9nierie M\u00e9dicale et de la Complexit\u00e9 \u2013 Informatique, Math\u00e9matiques et Applications (TIMC-IMAG), F-38000, Grenoble, France", 
            "Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, F-38000, Grenoble, France", 
            "Conservatoire national des arts et m\u00e9tiers, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suau", 
        "givenName": "Antonia", 
        "id": "sg:person.01311545560.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311545560.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Direction des Sciences du Vivant", 
          "id": "https://www.grid.ac/institutes/grid.419786.5", 
          "name": [
            "Direction des Sciences du Vivant, CEA, Institut de G\u00e9nomique, Genoscope & CNRS-UMR8030, \u00c9vry, France", 
            "Laboratoire d\u2019Analyses Bioinformatiques en G\u00e9nomique et M\u00e9tabolisme, \u00c9vry, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cruveiller", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.0676730130.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676730130.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Direction des Sciences du Vivant", 
          "id": "https://www.grid.ac/institutes/grid.419786.5", 
          "name": [
            "Direction des Sciences du Vivant, CEA, Institut de G\u00e9nomique, Genoscope & CNRS-UMR8030, \u00c9vry, France", 
            "Laboratoire d\u2019Analyses Bioinformatiques en G\u00e9nomique et M\u00e9tabolisme, \u00c9vry, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e9digue", 
        "givenName": "Claudine", 
        "id": "sg:person.01357611646.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357611646.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9l\u00e9gation Alpes", 
          "id": "https://www.grid.ac/institutes/grid.457026.2", 
          "name": [
            "Univ. Grenoble Alpes, Laboratoire Technologies de l\u2019Ing\u00e9nierie M\u00e9dicale et de la Complexit\u00e9 \u2013 Informatique, Math\u00e9matiques et Applications (TIMC-IMAG), F-38000, Grenoble, France", 
            "Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneider", 
        "givenName": "Dominique", 
        "id": "sg:person.01254730745.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254730745.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Research Institute for Exploitation of the Sea", 
          "id": "https://www.grid.ac/institutes/grid.4825.b", 
          "name": [
            "Univ. Grenoble Alpes, Laboratoire Technologies de l\u2019Ing\u00e9nierie M\u00e9dicale et de la Complexit\u00e9 \u2013 Informatique, Math\u00e9matiques et Applications (TIMC-IMAG), F-38000, Grenoble, France", 
            "Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, F-38000, Grenoble, France", 
            "Ifremer, DYNECO/Pelagos, 29280, Plouzan\u00e9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Gac", 
        "givenName": "Micka\u00ebl", 
        "id": "sg:person.0654771645.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654771645.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg3483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000153000", 
          "https://doi.org/10.1038/nrg3483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.069906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002010680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.069906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002010680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002440876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.12312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002707797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004277286", 
          "https://doi.org/10.1038/ng1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004277286", 
          "https://doi.org/10.1038/ng1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2009.09.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007185677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008340720", 
          "https://doi.org/10.1038/nature08480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008340720", 
          "https://doi.org/10.1038/nature08480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0508724103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012372062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-13-46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020606931", 
          "https://doi.org/10.1186/1471-2148-13-46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/225563a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021549008", 
          "https://doi.org/10.1038/225563a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021857831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023468665", 
          "https://doi.org/10.1038/nrmicro2750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.111.000406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024138521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.111.000406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024138521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.01377-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025977964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027058848", 
          "https://doi.org/10.1038/35020564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027058848", 
          "https://doi.org/10.1038/35020564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5359.2115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028009962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.09696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029302439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-195106000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029517478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-195106000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029517478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0803151105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030204168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1314561111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031207728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1214449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033737710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034357275", 
          "https://doi.org/10.1038/nature08249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034357275", 
          "https://doi.org/10.1038/nature08249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/evo.12234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034510036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.62.081307.162938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034946833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/evo.12302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036423129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1248688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038569862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2009.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042018356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msq024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045807536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msq024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045807536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048303688", 
          "https://doi.org/10.1038/nature11514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2007.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052716211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/652433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058841752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7809610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062649783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3366/jsbnh.1952.2.9.408a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071197877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074707374", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: The impact of historical contingency, i.e. the past evolutionary history of a population, on further adaptation is mostly unknown at both the phenotypic and genomic levels. We addressed this question using a two-step evolution experiment. First, replicate populations of Escherichia coli were propagated in four different environmental conditions for 1000 generations. Then, all replicate populations were transferred and propagated for further 1000 generations to a single new environment.\nRESULTS: Using this two-step experimental evolution strategy, we investigated, at both the phenotypic and genomic levels, whether and how adaptation in the initial historical environments impacted evolutionary trajectories in a new environment. We showed that both the growth rate and fitness of the evolved populations obtained after the second step of evolution were contingent upon past evolutionary history. In contrast however, the genes that were modified during the second step of evolution were independent from the previous history of the populations.\nCONCLUSIONS: Our work suggests that historical contingency affects phenotypic adaptation to a new environment. This was however not reflected at the genomic level implying complex relationships between environmental factors and the genotype-to-phenotype map.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12862-016-0662-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3797153", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "1471-2148"
        ], 
        "name": "BMC Evolutionary Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Contrasting effects of historical contingency on phenotypic and genomic trajectories during a two-step evolution experiment with bacteria", 
    "pagination": "86", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "674d8bddd924d118fe67dbdbebdf22a33cf08c15760af5bde4b6eea74496d24f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27108090"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100966975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12862-016-0662-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021682006"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12862-016-0662-8", 
      "https://app.dimensions.ai/details/publication/pub.1021682006"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12862-016-0662-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-016-0662-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-016-0662-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-016-0662-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-016-0662-8'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      71 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12862-016-0662-8 schema:about N1f1afdd2626f4ef4a424b103bf39c5ff
2 N36b9c8441ee946d8882aff5e787b2e47
3 N3771d2f517af4ae7bae5a92e6705077a
4 N42bd422a0099435f98aefad22499e9bb
5 N81cbad50bd7a4249a667a8ebfed68fd1
6 Nc067de427bbe4ecaa161e4f1239896d2
7 Ne2880991c79a499795be0b7e41931229
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N57add4ed797142e69e700ee65bcd3776
11 schema:citation sg:pub.10.1038/225563a0
12 sg:pub.10.1038/35020564
13 sg:pub.10.1038/nature08249
14 sg:pub.10.1038/nature08480
15 sg:pub.10.1038/nature11514
16 sg:pub.10.1038/ng1906
17 sg:pub.10.1038/nrg3483
18 sg:pub.10.1038/nrmicro2750
19 sg:pub.10.1186/1471-2148-13-46
20 https://app.dimensions.ai/details/publication/pub.1074707374
21 https://doi.org/10.1016/j.jmb.2009.09.052
22 https://doi.org/10.1016/j.tig.2009.01.002
23 https://doi.org/10.1016/j.tree.2007.09.011
24 https://doi.org/10.1073/pnas.0508724103
25 https://doi.org/10.1073/pnas.0803151105
26 https://doi.org/10.1073/pnas.1314561111
27 https://doi.org/10.1086/285289
28 https://doi.org/10.1086/652433
29 https://doi.org/10.1093/molbev/msq024
30 https://doi.org/10.1093/nar/gks1194
31 https://doi.org/10.1097/00010694-195106000-00010
32 https://doi.org/10.1111/evo.12234
33 https://doi.org/10.1111/evo.12302
34 https://doi.org/10.1111/mec.12312
35 https://doi.org/10.1126/science.1214449
36 https://doi.org/10.1126/science.1248688
37 https://doi.org/10.1126/science.1250939
38 https://doi.org/10.1126/science.279.5359.2115
39 https://doi.org/10.1126/science.7809610
40 https://doi.org/10.1128/mbio.01377-14
41 https://doi.org/10.1146/annurev.micro.62.081307.162938
42 https://doi.org/10.1534/g3.111.000406
43 https://doi.org/10.1534/genetics.106.069906
44 https://doi.org/10.3366/jsbnh.1952.2.9.408a
45 https://doi.org/10.7554/elife.09696
46 schema:datePublished 2016-12
47 schema:datePublishedReg 2016-12-01
48 schema:description BACKGROUND: The impact of historical contingency, i.e. the past evolutionary history of a population, on further adaptation is mostly unknown at both the phenotypic and genomic levels. We addressed this question using a two-step evolution experiment. First, replicate populations of Escherichia coli were propagated in four different environmental conditions for 1000 generations. Then, all replicate populations were transferred and propagated for further 1000 generations to a single new environment. RESULTS: Using this two-step experimental evolution strategy, we investigated, at both the phenotypic and genomic levels, whether and how adaptation in the initial historical environments impacted evolutionary trajectories in a new environment. We showed that both the growth rate and fitness of the evolved populations obtained after the second step of evolution were contingent upon past evolutionary history. In contrast however, the genes that were modified during the second step of evolution were independent from the previous history of the populations. CONCLUSIONS: Our work suggests that historical contingency affects phenotypic adaptation to a new environment. This was however not reflected at the genomic level implying complex relationships between environmental factors and the genotype-to-phenotype map.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N15b86177f5c24c488f07d128558da1b0
53 N6f2fb570ddfe418faf5e97403f00650b
54 sg:journal.1024249
55 schema:name Contrasting effects of historical contingency on phenotypic and genomic trajectories during a two-step evolution experiment with bacteria
56 schema:pagination 86
57 schema:productId N22c241d5a8464e859d1fea50d6879895
58 N55bf3374fa0b453981d91ea6a7a4e37f
59 N75b5297dbd034fb9a0de258a47d97aef
60 Ndae3265c1b96448fa6de8d0a10c5461f
61 Ne4e8a697bb7344a084e99f067aad9c74
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021682006
63 https://doi.org/10.1186/s12862-016-0662-8
64 schema:sdDatePublished 2019-04-10T20:53
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nd1d9723a14c2446bb24839927524685b
67 schema:url http://link.springer.com/10.1186%2Fs12862-016-0662-8
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N15b86177f5c24c488f07d128558da1b0 schema:volumeNumber 16
72 rdf:type schema:PublicationVolume
73 N1f1afdd2626f4ef4a424b103bf39c5ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Evolution, Molecular
75 rdf:type schema:DefinedTerm
76 N22c241d5a8464e859d1fea50d6879895 schema:name nlm_unique_id
77 schema:value 100966975
78 rdf:type schema:PropertyValue
79 N29fb70670bc44cbfab2e0ec21f0a739e rdf:first sg:person.0654771645.66
80 rdf:rest rdf:nil
81 N2b469519dbed4d10a5216cfbdbc481ac rdf:first sg:person.0676730130.11
82 rdf:rest Ndbefc897635945c0bc9d2bdaf8714373
83 N36b9c8441ee946d8882aff5e787b2e47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Environment
85 rdf:type schema:DefinedTerm
86 N3771d2f517af4ae7bae5a92e6705077a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Escherichia coli
88 rdf:type schema:DefinedTerm
89 N42bd422a0099435f98aefad22499e9bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Adaptation, Physiological
91 rdf:type schema:DefinedTerm
92 N4a3debc75df34a108b8f1878ac588186 rdf:first sg:person.01254730745.43
93 rdf:rest N29fb70670bc44cbfab2e0ec21f0a739e
94 N55bf3374fa0b453981d91ea6a7a4e37f schema:name doi
95 schema:value 10.1186/s12862-016-0662-8
96 rdf:type schema:PropertyValue
97 N57add4ed797142e69e700ee65bcd3776 rdf:first sg:person.01254304151.37
98 rdf:rest N77159632471d4fcc97eedc5c90b36f71
99 N6f2fb570ddfe418faf5e97403f00650b schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N75b5297dbd034fb9a0de258a47d97aef schema:name readcube_id
102 schema:value 674d8bddd924d118fe67dbdbebdf22a33cf08c15760af5bde4b6eea74496d24f
103 rdf:type schema:PropertyValue
104 N77159632471d4fcc97eedc5c90b36f71 rdf:first sg:person.01311545560.97
105 rdf:rest N2b469519dbed4d10a5216cfbdbc481ac
106 N81cbad50bd7a4249a667a8ebfed68fd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Genome, Bacterial
108 rdf:type schema:DefinedTerm
109 Nc067de427bbe4ecaa161e4f1239896d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Gene-Environment Interaction
111 rdf:type schema:DefinedTerm
112 Nd1d9723a14c2446bb24839927524685b schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ndae3265c1b96448fa6de8d0a10c5461f schema:name dimensions_id
115 schema:value pub.1021682006
116 rdf:type schema:PropertyValue
117 Ndbefc897635945c0bc9d2bdaf8714373 rdf:first sg:person.01357611646.30
118 rdf:rest N4a3debc75df34a108b8f1878ac588186
119 Ne2880991c79a499795be0b7e41931229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Phenotype
121 rdf:type schema:DefinedTerm
122 Ne4e8a697bb7344a084e99f067aad9c74 schema:name pubmed_id
123 schema:value 27108090
124 rdf:type schema:PropertyValue
125 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
126 schema:name Biological Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
129 schema:name Genetics
130 rdf:type schema:DefinedTerm
131 sg:grant.3797153 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-016-0662-8
132 rdf:type schema:MonetaryGrant
133 sg:journal.1024249 schema:issn 1471-2148
134 schema:name BMC Evolutionary Biology
135 rdf:type schema:Periodical
136 sg:person.01254304151.37 schema:affiliation https://www.grid.ac/institutes/grid.457026.2
137 schema:familyName Plucain
138 schema:givenName Jessica
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254304151.37
140 rdf:type schema:Person
141 sg:person.01254730745.43 schema:affiliation https://www.grid.ac/institutes/grid.457026.2
142 schema:familyName Schneider
143 schema:givenName Dominique
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254730745.43
145 rdf:type schema:Person
146 sg:person.01311545560.97 schema:affiliation https://www.grid.ac/institutes/grid.36823.3c
147 schema:familyName Suau
148 schema:givenName Antonia
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311545560.97
150 rdf:type schema:Person
151 sg:person.01357611646.30 schema:affiliation https://www.grid.ac/institutes/grid.419786.5
152 schema:familyName Médigue
153 schema:givenName Claudine
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357611646.30
155 rdf:type schema:Person
156 sg:person.0654771645.66 schema:affiliation https://www.grid.ac/institutes/grid.4825.b
157 schema:familyName Le Gac
158 schema:givenName Mickaël
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654771645.66
160 rdf:type schema:Person
161 sg:person.0676730130.11 schema:affiliation https://www.grid.ac/institutes/grid.419786.5
162 schema:familyName Cruveiller
163 schema:givenName Stéphane
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676730130.11
165 rdf:type schema:Person
166 sg:pub.10.1038/225563a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021549008
167 https://doi.org/10.1038/225563a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/35020564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027058848
170 https://doi.org/10.1038/35020564
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nature08249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034357275
173 https://doi.org/10.1038/nature08249
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nature08480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008340720
176 https://doi.org/10.1038/nature08480
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nature11514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048303688
179 https://doi.org/10.1038/nature11514
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/ng1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004277286
182 https://doi.org/10.1038/ng1906
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nrg3483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000153000
185 https://doi.org/10.1038/nrg3483
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nrmicro2750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023468665
188 https://doi.org/10.1038/nrmicro2750
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2148-13-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020606931
191 https://doi.org/10.1186/1471-2148-13-46
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1074707374 schema:CreativeWork
194 https://doi.org/10.1016/j.jmb.2009.09.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007185677
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.tig.2009.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042018356
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.tree.2007.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052716211
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.0508724103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012372062
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1073/pnas.0803151105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030204168
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1073/pnas.1314561111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031207728
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1086/285289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595412
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1086/652433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058841752
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/molbev/msq024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045807536
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/gks1194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021857831
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1097/00010694-195106000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029517478
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/evo.12234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034510036
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/evo.12302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036423129
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1111/mec.12312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002707797
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.1214449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033737710
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1248688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038569862
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1250939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002440876
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.279.5359.2115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028009962
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.7809610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062649783
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1128/mbio.01377-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025977964
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1146/annurev.micro.62.081307.162938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034946833
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1534/g3.111.000406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024138521
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1534/genetics.106.069906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002010680
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3366/jsbnh.1952.2.9.408a schema:sameAs https://app.dimensions.ai/details/publication/pub.1071197877
241 rdf:type schema:CreativeWork
242 https://doi.org/10.7554/elife.09696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029302439
243 rdf:type schema:CreativeWork
244 https://www.grid.ac/institutes/grid.36823.3c schema:alternateName Conservatoire National des Arts et Métiers
245 schema:name Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, F-38000, Grenoble, France
246 Conservatoire national des arts et métiers, Paris, France
247 Univ. Grenoble Alpes, Laboratoire Technologies de l’Ingénierie Médicale et de la Complexité – Informatique, Mathématiques et Applications (TIMC-IMAG), F-38000, Grenoble, France
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.419786.5 schema:alternateName Direction des Sciences du Vivant
250 schema:name Direction des Sciences du Vivant, CEA, Institut de Génomique, Genoscope & CNRS-UMR8030, Évry, France
251 Laboratoire d’Analyses Bioinformatiques en Génomique et Métabolisme, Évry, France
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.457026.2 schema:alternateName Délégation Alpes
254 schema:name Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, F-38000, Grenoble, France
255 Univ. Grenoble Alpes, Laboratoire Technologies de l’Ingénierie Médicale et de la Complexité – Informatique, Mathématiques et Applications (TIMC-IMAG), F-38000, Grenoble, France
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.4825.b schema:alternateName French Research Institute for Exploitation of the Sea
258 schema:name Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, F-38000, Grenoble, France
259 Ifremer, DYNECO/Pelagos, 29280, Plouzané, France
260 Univ. Grenoble Alpes, Laboratoire Technologies de l’Ingénierie Médicale et de la Complexité – Informatique, Mathématiques et Applications (TIMC-IMAG), F-38000, Grenoble, France
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...