Concatenated alignments and the case of the disappearing tree View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12-30

AUTHORS

Thorsten Thiergart, Giddy Landan, William F Martin

ABSTRACT

BackgroundAnalyzed individually, gene trees for a given taxon set tend to harbour incongruent or conflicting signals. One popular approach to deal with this circumstance is to use concatenated data. But especially in prokaryotes, where lateral gene transfer (LGT) is a natural mechanism of generating genetic diversity, there are open questions as to whether concatenation amplifies or averages phylogenetic signals residing in individual genes. Here we investigate concatenations of prokaryotic and eukaryotic datasets to investigate possible sources of incongruence in phylogenetic trees and to examine the level of overlap between individual and concatenated alignments.ResultsWe analyzed prokaryotic datasets comprising 248 invidual gene trees from 315 genomes at three taxonomic depths spanning gammaproteobacteria, proteobacteria, and prokaryotes (bacteria plus archaea), and eukaryotic datasets comprising 279 invidual gene trees from 85 genomes at two taxonomic depths: across plants-animals-fungi and within fungi. Consistent with previous findings, the branches in trees made from concatenated alignments are, in general, not supported by any of their underlying individual gene trees, even though the concatenation trees tend to possess high bootstrap proportions values. For the prokaryote data, this observation is independent of phylogenetic depth and sequence conservation. The eukaryotic data show much better agreement between concatenation and single gene trees. LGT frequencies in trees were estimated using established methods. Sequence length in individual alignments, but not sequence divergence, was found to correlate with the generation of branches that correspond to the concatenated tree.ConclusionsThe weak correspondence of concatenation trees with single gene trees gives rise to the question where the phylogenetic signal in concatenated trees is coming from. The eukaryote data reveals a better correspondence between individual and concatenation trees than the prokaryote data. The question of whether the lack of correspondence between individual genes and the concatenation tree in the prokaryotic data is due to LGT or phylogenetic artefacts remains unanswered. If LGT is the cause of incongruence between concatenation and individual trees, we would have expected to see greater degrees of incongruence for more divergent prokaryotic data sets, which was not observed, although estimated rates of LGT suggest that LGT is responsible for at least some of the observed incongruence. More... »

PAGES

266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12862-014-0266-0

DOI

http://dx.doi.org/10.1186/s12862-014-0266-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032240352

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25547755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Archaea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungi", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Transfer, Horizontal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Molecular Evolution, Heinrich-Heine-Universit\u00e4t D\u00fcsseldorf, D\u00fcsseldorf, Germany", 
          "id": "http://www.grid.ac/institutes/grid.411327.2", 
          "name": [
            "Institute of Molecular Evolution, Heinrich-Heine-Universit\u00e4t D\u00fcsseldorf, D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thiergart", 
        "givenName": "Thorsten", 
        "id": "sg:person.0750714051.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750714051.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-Universit\u00e4t Kiel, Kiel, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-Universit\u00e4t Kiel, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landan", 
        "givenName": "Giddy", 
        "id": "sg:person.01165003574.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165003574.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Molecular Evolution, Heinrich-Heine-Universit\u00e4t D\u00fcsseldorf, D\u00fcsseldorf, Germany", 
          "id": "http://www.grid.ac/institutes/grid.411327.2", 
          "name": [
            "Institute of Molecular Evolution, Heinrich-Heine-Universit\u00e4t D\u00fcsseldorf, D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin", 
        "givenName": "William F", 
        "id": "sg:person.01031250622.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031250622.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2007-8-9-r199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024625580", 
          "https://doi.org/10.1186/gb-2007-8-9-r199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019299949", 
          "https://doi.org/10.1038/nature12352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020124788", 
          "https://doi.org/10.1038/nature12779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-5-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012058457", 
          "https://doi.org/10.1186/1471-2148-5-33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012974304", 
          "https://doi.org/10.1186/1471-2105-11-324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042436823", 
          "https://doi.org/10.1038/nrmicro2426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-4-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012352465", 
          "https://doi.org/10.1186/1745-6150-4-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00987956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027724957", 
          "https://doi.org/10.1007/bf00987956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043139679", 
          "https://doi.org/10.1186/jbiol159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/90129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537539", 
          "https://doi.org/10.1038/90129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002445123", 
          "https://doi.org/10.1038/30234"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12-30", 
    "datePublishedReg": "2014-12-30", 
    "description": "BackgroundAnalyzed individually, gene trees for a given taxon set tend to harbour incongruent or conflicting signals. One popular approach to deal with this circumstance is to use concatenated data. But especially in prokaryotes, where lateral gene transfer (LGT) is a natural mechanism of generating genetic diversity, there are open questions as to whether concatenation amplifies or averages phylogenetic signals residing in individual genes. Here we investigate concatenations of prokaryotic and eukaryotic datasets to investigate possible sources of incongruence in phylogenetic trees and to examine the level of overlap between individual and concatenated alignments.ResultsWe analyzed prokaryotic datasets comprising 248 invidual gene trees from 315 genomes at three taxonomic depths spanning gammaproteobacteria, proteobacteria, and prokaryotes (bacteria plus archaea), and eukaryotic datasets comprising 279 invidual gene trees from 85 genomes at two taxonomic depths: across plants-animals-fungi and within fungi. Consistent with previous findings, the branches in trees made from concatenated alignments are, in general, not supported by any of their underlying individual gene trees, even though the concatenation trees tend to possess high bootstrap proportions values. For the prokaryote data, this observation is independent of phylogenetic depth and sequence conservation. The eukaryotic data show much better agreement between concatenation and single gene trees. LGT frequencies in trees were estimated using established methods. Sequence length in individual alignments, but not sequence divergence, was found to correlate with the generation of branches that correspond to the concatenated tree.ConclusionsThe weak correspondence of concatenation trees with single gene trees gives rise to the question where the phylogenetic signal in concatenated trees is coming from. The eukaryote data reveals a better correspondence between individual and concatenation trees than the prokaryote data. The question of whether the lack of correspondence between individual genes and the concatenation tree in the prokaryotic data is due to LGT or phylogenetic artefacts remains unanswered. If LGT is the cause of incongruence between concatenation and individual trees, we would have expected to see greater degrees of incongruence for more divergent prokaryotic data sets, which was not observed, although estimated rates of LGT suggest that LGT is responsible for at least some of the observed incongruence.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12862-014-0266-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3795731", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024249", 
        "issn": [
          "2730-7182"
        ], 
        "name": "BMC Ecology and Evolution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "lateral gene transfer", 
      "single-gene trees", 
      "gene trees", 
      "concatenation trees", 
      "concatenated tree", 
      "phylogenetic signal", 
      "taxonomic depth", 
      "individual genes", 
      "eukaryotic datasets", 
      "individual gene trees", 
      "cause of incongruence", 
      "phylogenetic depth", 
      "concatenated alignments", 
      "sequence divergence", 
      "sequence conservation", 
      "phylogenetic artifacts", 
      "genetic diversity", 
      "phylogenetic tree", 
      "observed incongruence", 
      "eukaryotic data", 
      "prokaryotic data", 
      "gene transfer", 
      "individual trees", 
      "genome", 
      "level of overlap", 
      "genes", 
      "fungi", 
      "incongruence", 
      "trees", 
      "natural mechanism", 
      "sequence length", 
      "lack of correspondence", 
      "prokaryotes", 
      "Gammaproteobacteria", 
      "taxa", 
      "Proteobacteria", 
      "weak correspondence", 
      "individual alignments", 
      "diversity", 
      "conservation", 
      "generations of branches", 
      "divergence", 
      "alignment", 
      "previous findings", 
      "signals", 
      "open question", 
      "mechanism", 
      "overlap", 
      "individuals", 
      "branches", 
      "data sets", 
      "dataset", 
      "concatenation", 
      "greater degree", 
      "data", 
      "levels", 
      "proportion values", 
      "possible sources", 
      "length", 
      "generation", 
      "questions", 
      "ResultsWe", 
      "transfer", 
      "depth", 
      "findings", 
      "lack", 
      "source", 
      "observations", 
      "rise", 
      "set", 
      "good correspondence", 
      "rate", 
      "popular approach", 
      "cause", 
      "degree", 
      "approach", 
      "correspondence", 
      "amplifies", 
      "tend", 
      "method", 
      "circumstances", 
      "values", 
      "artifacts", 
      "incongruent", 
      "cases", 
      "agreement", 
      "good agreement"
    ], 
    "name": "Concatenated alignments and the case of the disappearing tree", 
    "pagination": "266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032240352"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12862-014-0266-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25547755"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12862-014-0266-0", 
      "https://app.dimensions.ai/details/publication/pub.1032240352"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_639.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12862-014-0266-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12862-014-0266-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12862-014-0266-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12862-014-0266-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12862-014-0266-0'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      133 URIs      114 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12862-014-0266-0 schema:about N0346957ee56c4c42b01ce8ccd591bef6
2 N16a5a737e8fb41b983f81ae7efdba91b
3 N227ce84c571c451595e235c2407b4240
4 N7a83acd4f13a489cac2584131f57fcea
5 N7addc2a2761d443aa1403fe6e0c5e35e
6 N8c287321c82a4b0ebdb290baa2b13c4d
7 N8dc76f4e33504a12a0ae138c31b11149
8 N911a925efea14f9bb75d64d845969730
9 N9d1538a19bed4e4c8761ae3389835de4
10 Ndd8f13f4b77b4d259d9fb956643ee935
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N2c133252a2234f869a2851a96ba374ea
14 schema:citation sg:pub.10.1007/bf00987956
15 sg:pub.10.1038/30234
16 sg:pub.10.1038/90129
17 sg:pub.10.1038/nature12352
18 sg:pub.10.1038/nature12779
19 sg:pub.10.1038/nrmicro2426
20 sg:pub.10.1186/1471-2105-11-324
21 sg:pub.10.1186/1471-2148-5-33
22 sg:pub.10.1186/1745-6150-4-34
23 sg:pub.10.1186/gb-2007-8-9-r199
24 sg:pub.10.1186/jbiol159
25 schema:datePublished 2014-12-30
26 schema:datePublishedReg 2014-12-30
27 schema:description BackgroundAnalyzed individually, gene trees for a given taxon set tend to harbour incongruent or conflicting signals. One popular approach to deal with this circumstance is to use concatenated data. But especially in prokaryotes, where lateral gene transfer (LGT) is a natural mechanism of generating genetic diversity, there are open questions as to whether concatenation amplifies or averages phylogenetic signals residing in individual genes. Here we investigate concatenations of prokaryotic and eukaryotic datasets to investigate possible sources of incongruence in phylogenetic trees and to examine the level of overlap between individual and concatenated alignments.ResultsWe analyzed prokaryotic datasets comprising 248 invidual gene trees from 315 genomes at three taxonomic depths spanning gammaproteobacteria, proteobacteria, and prokaryotes (bacteria plus archaea), and eukaryotic datasets comprising 279 invidual gene trees from 85 genomes at two taxonomic depths: across plants-animals-fungi and within fungi. Consistent with previous findings, the branches in trees made from concatenated alignments are, in general, not supported by any of their underlying individual gene trees, even though the concatenation trees tend to possess high bootstrap proportions values. For the prokaryote data, this observation is independent of phylogenetic depth and sequence conservation. The eukaryotic data show much better agreement between concatenation and single gene trees. LGT frequencies in trees were estimated using established methods. Sequence length in individual alignments, but not sequence divergence, was found to correlate with the generation of branches that correspond to the concatenated tree.ConclusionsThe weak correspondence of concatenation trees with single gene trees gives rise to the question where the phylogenetic signal in concatenated trees is coming from. The eukaryote data reveals a better correspondence between individual and concatenation trees than the prokaryote data. The question of whether the lack of correspondence between individual genes and the concatenation tree in the prokaryotic data is due to LGT or phylogenetic artefacts remains unanswered. If LGT is the cause of incongruence between concatenation and individual trees, we would have expected to see greater degrees of incongruence for more divergent prokaryotic data sets, which was not observed, although estimated rates of LGT suggest that LGT is responsible for at least some of the observed incongruence.
28 schema:genre article
29 schema:isAccessibleForFree true
30 schema:isPartOf N35ecb38785cb4187b609a775137235b7
31 N375224d9a1064e66bbc9d672fe564381
32 sg:journal.1024249
33 schema:keywords Gammaproteobacteria
34 Proteobacteria
35 ResultsWe
36 agreement
37 alignment
38 amplifies
39 approach
40 artifacts
41 branches
42 cases
43 cause
44 cause of incongruence
45 circumstances
46 concatenated alignments
47 concatenated tree
48 concatenation
49 concatenation trees
50 conservation
51 correspondence
52 data
53 data sets
54 dataset
55 degree
56 depth
57 divergence
58 diversity
59 eukaryotic data
60 eukaryotic datasets
61 findings
62 fungi
63 gene transfer
64 gene trees
65 generation
66 generations of branches
67 genes
68 genetic diversity
69 genome
70 good agreement
71 good correspondence
72 greater degree
73 incongruence
74 incongruent
75 individual alignments
76 individual gene trees
77 individual genes
78 individual trees
79 individuals
80 lack
81 lack of correspondence
82 lateral gene transfer
83 length
84 level of overlap
85 levels
86 mechanism
87 method
88 natural mechanism
89 observations
90 observed incongruence
91 open question
92 overlap
93 phylogenetic artifacts
94 phylogenetic depth
95 phylogenetic signal
96 phylogenetic tree
97 popular approach
98 possible sources
99 previous findings
100 prokaryotes
101 prokaryotic data
102 proportion values
103 questions
104 rate
105 rise
106 sequence conservation
107 sequence divergence
108 sequence length
109 set
110 signals
111 single-gene trees
112 source
113 taxa
114 taxonomic depth
115 tend
116 transfer
117 trees
118 values
119 weak correspondence
120 schema:name Concatenated alignments and the case of the disappearing tree
121 schema:pagination 266
122 schema:productId N5d906bc1710b46cd82d351706498c7f6
123 N8797bfa4c50b48b2a4011378fb90c27b
124 N8ff2a2715faa4cfc8067c4217a9cc4de
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032240352
126 https://doi.org/10.1186/s12862-014-0266-0
127 schema:sdDatePublished 2022-10-01T06:39
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher N75dd39c180f246849663718ab54ebfbb
130 schema:url https://doi.org/10.1186/s12862-014-0266-0
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N0346957ee56c4c42b01ce8ccd591bef6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Bacteria
136 rdf:type schema:DefinedTerm
137 N16a5a737e8fb41b983f81ae7efdba91b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Animals
139 rdf:type schema:DefinedTerm
140 N173071935239438994c581d82ac34141 rdf:first sg:person.01165003574.37
141 rdf:rest N4356c4cf4df441a791bfc4d50720552b
142 N227ce84c571c451595e235c2407b4240 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Genome
144 rdf:type schema:DefinedTerm
145 N2c133252a2234f869a2851a96ba374ea rdf:first sg:person.0750714051.66
146 rdf:rest N173071935239438994c581d82ac34141
147 N35ecb38785cb4187b609a775137235b7 schema:volumeNumber 14
148 rdf:type schema:PublicationVolume
149 N375224d9a1064e66bbc9d672fe564381 schema:issueNumber 1
150 rdf:type schema:PublicationIssue
151 N4356c4cf4df441a791bfc4d50720552b rdf:first sg:person.01031250622.21
152 rdf:rest rdf:nil
153 N5d906bc1710b46cd82d351706498c7f6 schema:name doi
154 schema:value 10.1186/s12862-014-0266-0
155 rdf:type schema:PropertyValue
156 N75dd39c180f246849663718ab54ebfbb schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 N7a83acd4f13a489cac2584131f57fcea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Archaea
160 rdf:type schema:DefinedTerm
161 N7addc2a2761d443aa1403fe6e0c5e35e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Phylogeny
163 rdf:type schema:DefinedTerm
164 N8797bfa4c50b48b2a4011378fb90c27b schema:name pubmed_id
165 schema:value 25547755
166 rdf:type schema:PropertyValue
167 N8c287321c82a4b0ebdb290baa2b13c4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Gene Transfer, Horizontal
169 rdf:type schema:DefinedTerm
170 N8dc76f4e33504a12a0ae138c31b11149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Fungi
172 rdf:type schema:DefinedTerm
173 N8ff2a2715faa4cfc8067c4217a9cc4de schema:name dimensions_id
174 schema:value pub.1032240352
175 rdf:type schema:PropertyValue
176 N911a925efea14f9bb75d64d845969730 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Conserved Sequence
178 rdf:type schema:DefinedTerm
179 N9d1538a19bed4e4c8761ae3389835de4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Evolution, Molecular
181 rdf:type schema:DefinedTerm
182 Ndd8f13f4b77b4d259d9fb956643ee935 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Plants
184 rdf:type schema:DefinedTerm
185 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
186 schema:name Biological Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
189 schema:name Genetics
190 rdf:type schema:DefinedTerm
191 sg:grant.3795731 http://pending.schema.org/fundedItem sg:pub.10.1186/s12862-014-0266-0
192 rdf:type schema:MonetaryGrant
193 sg:journal.1024249 schema:issn 2730-7182
194 schema:name BMC Ecology and Evolution
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.01031250622.21 schema:affiliation grid-institutes:grid.411327.2
198 schema:familyName Martin
199 schema:givenName William F
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031250622.21
201 rdf:type schema:Person
202 sg:person.01165003574.37 schema:affiliation grid-institutes:grid.9764.c
203 schema:familyName Landan
204 schema:givenName Giddy
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165003574.37
206 rdf:type schema:Person
207 sg:person.0750714051.66 schema:affiliation grid-institutes:grid.411327.2
208 schema:familyName Thiergart
209 schema:givenName Thorsten
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750714051.66
211 rdf:type schema:Person
212 sg:pub.10.1007/bf00987956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027724957
213 https://doi.org/10.1007/bf00987956
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/30234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002445123
216 https://doi.org/10.1038/30234
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/90129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537539
219 https://doi.org/10.1038/90129
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nature12352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019299949
222 https://doi.org/10.1038/nature12352
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nature12779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020124788
225 https://doi.org/10.1038/nature12779
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nrmicro2426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042436823
228 https://doi.org/10.1038/nrmicro2426
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/1471-2105-11-324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012974304
231 https://doi.org/10.1186/1471-2105-11-324
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/1471-2148-5-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012058457
234 https://doi.org/10.1186/1471-2148-5-33
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1745-6150-4-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012352465
237 https://doi.org/10.1186/1745-6150-4-34
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/gb-2007-8-9-r199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024625580
240 https://doi.org/10.1186/gb-2007-8-9-r199
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/jbiol159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043139679
243 https://doi.org/10.1186/jbiol159
244 rdf:type schema:CreativeWork
245 grid-institutes:grid.411327.2 schema:alternateName Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
246 schema:name Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
247 rdf:type schema:Organization
248 grid-institutes:grid.9764.c schema:alternateName Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-Universität Kiel, Kiel, Germany
249 schema:name Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-Universität Kiel, Kiel, Germany
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...