Ontology type: schema:ScholarlyArticle Open Access: True
2022-05-11
AUTHORSNikola Beneš, Luboš Brim, Jakub Kadlecaj, Samuel Pastva, David Šafránek
ABSTRACTBackgroundBoolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors–subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks.ResultsIn this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method’s applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus.ConclusionsThe proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system’s stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings. More... »
PAGES173
http://scigraph.springernature.com/pub.10.1186/s12859-022-04708-9
DOIhttp://dx.doi.org/10.1186/s12859-022-04708-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147796833
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/35546394
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aniline Compounds",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Benzamides",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "COVID-19",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Regulatory Networks",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Genetic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Naphthalenes",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "SARS-CoV-2",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Faculty of Informatics, Masaryk University, Brno, Czechia",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Faculty of Informatics, Masaryk University, Brno, Czechia"
],
"type": "Organization"
},
"familyName": "Bene\u0161",
"givenName": "Nikola",
"id": "sg:person.014465763501.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465763501.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Informatics, Masaryk University, Brno, Czechia",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Faculty of Informatics, Masaryk University, Brno, Czechia"
],
"type": "Organization"
},
"familyName": "Brim",
"givenName": "Lubo\u0161",
"id": "sg:person.0645117057.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645117057.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Informatics, Masaryk University, Brno, Czechia",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Faculty of Informatics, Masaryk University, Brno, Czechia"
],
"type": "Organization"
},
"familyName": "Kadlecaj",
"givenName": "Jakub",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Informatics, Masaryk University, Brno, Czechia",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Faculty of Informatics, Masaryk University, Brno, Czechia"
],
"type": "Organization"
},
"familyName": "Pastva",
"givenName": "Samuel",
"id": "sg:person.016130263073.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130263073.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Informatics, Masaryk University, Brno, Czechia",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Faculty of Informatics, Masaryk University, Brno, Czechia"
],
"type": "Organization"
},
"familyName": "\u0160afr\u00e1nek",
"givenName": "David",
"id": "sg:person.011410250615.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410250615.43"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/s41597-020-0477-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1127377346",
"https://doi.org/10.1038/s41597-020-0477-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-12982-2_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052705408",
"https://doi.org/10.1007/978-3-319-12982-2_10"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-30942-8_41",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121185147",
"https://doi.org/10.1007/978-3-030-30942-8_41"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-53288-8_28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129384094",
"https://doi.org/10.1007/978-3-030-53288-8_28"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-48989-6_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013415023",
"https://doi.org/10.1007/978-3-319-48989-6_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-017-00651-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084130771",
"https://doi.org/10.1038/s41598-017-00651-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1752-0509-6-96",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021096684",
"https://doi.org/10.1186/1752-0509-6-96"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1752-0509-1-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024399429",
"https://doi.org/10.1186/1752-0509-1-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-75140-3_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038431193",
"https://doi.org/10.1007/978-3-540-75140-3_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-81685-8_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1139737846",
"https://doi.org/10.1007/978-3-030-81685-8_24"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3978-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027728242",
"https://doi.org/10.1007/978-1-4757-3978-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11047-015-9520-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031409994",
"https://doi.org/10.1007/s11047-015-9520-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-67471-1_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091456280",
"https://doi.org/10.1007/978-3-319-67471-1_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/s0092-8240(03)00061-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032335753",
"https://doi.org/10.1016/s0092-8240(03)00061-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-26916-0_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002484092",
"https://doi.org/10.1007/978-3-319-26916-0_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-097-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041944619",
"https://doi.org/10.1007/978-0-85729-097-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1155/2007/20180",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028892636",
"https://doi.org/10.1155/2007/20180"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-14-361",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052843540",
"https://doi.org/10.1186/1471-2105-14-361"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-31424-7_50",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049576730",
"https://doi.org/10.1007/978-3-642-31424-7_50"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-85633-5_14",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1141065688",
"https://doi.org/10.1007/978-3-030-85633-5_14"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-61779-361-5_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026247380",
"https://doi.org/10.1007/978-1-61779-361-5_23"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrm1570",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028080113",
"https://doi.org/10.1038/nrm1570"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-92675-9_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104213603",
"https://doi.org/10.1007/978-3-319-92675-9_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-32409-4_22",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1122128588",
"https://doi.org/10.1007/978-3-030-32409-4_22"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-020-20718-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134705066",
"https://doi.org/10.1038/s41467-020-20718-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-21690-4_38",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036257811",
"https://doi.org/10.1007/978-3-319-21690-4_38"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12918-016-0338-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006581133",
"https://doi.org/10.1186/s12918-016-0338-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg3885",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013591105",
"https://doi.org/10.1038/nrg3885"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s41232-020-00146-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1131315273",
"https://doi.org/10.1186/s41232-020-00146-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-018-22031-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101113776",
"https://doi.org/10.1038/s41598-018-22031-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-05-11",
"datePublishedReg": "2022-05-11",
"description": "BackgroundBoolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors\u2013subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a\u00a0bifurcation. We present a\u00a0methodology for analysing bifurcations in asynchronous parametrised Boolean networks.ResultsIn this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method\u2019s applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus.ConclusionsThe proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system\u2019s stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.",
"genre": "article",
"id": "sg:pub.10.1186/s12859-022-04708-9",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1023786",
"issn": [
"1471-2105"
],
"name": "BMC Bioinformatics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "23"
}
],
"keywords": [
"Boolean networks",
"symbolic graph algorithms",
"state space",
"bifurcation analysis",
"large-scale networks",
"graph algorithms",
"modelling formalism",
"attractor landscape",
"attractor bifurcation",
"impact of parameters",
"large networks",
"Boolean variables",
"system stability",
"bifurcation",
"computational framework",
"long-term behavior",
"logical parameters",
"term behavior",
"method's applicability",
"unknown information",
"attractors",
"parameters",
"recent biological findings",
"formalism",
"network",
"biochemical phenomena",
"decision tree",
"important features",
"applicability",
"presentation techniques",
"space",
"algorithm",
"modelling",
"complex biochemical phenomena",
"methodology",
"stability",
"analogy",
"unique capabilities",
"kinetic modelling",
"variables",
"phenomenon",
"agreement",
"framework",
"case study",
"analysis",
"results",
"technique",
"structure",
"large extent",
"tool",
"capability",
"behavior",
"information",
"concept",
"biological findings",
"features",
"trees",
"hundreds",
"quality",
"method",
"Eon",
"whole",
"biological phenotypes",
"changes",
"molecules",
"related molecules",
"study",
"landscape",
"impact",
"ConclusionsThe",
"extent",
"role",
"replication",
"activity",
"significant changes",
"findings",
"cells",
"SARS-CoV-2 virions",
"ResultsIn",
"virus",
"phenotype",
"paper",
"virions",
"human cells",
"suppressive role",
"interferon",
"different biological phenotypes",
"type 1 interferon",
"potential suppressive role",
"GRL0617"
],
"name": "Exploring attractor bifurcations in Boolean networks",
"pagination": "173",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147796833"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s12859-022-04708-9"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"35546394"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s12859-022-04708-9",
"https://app.dimensions.ai/details/publication/pub.1147796833"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:13",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_938.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s12859-022-04708-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-022-04708-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-022-04708-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-022-04708-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-022-04708-9'
This table displays all metadata directly associated to this object as RDF triples.
333 TRIPLES
21 PREDICATES
154 URIs
116 LITERALS
16 BLANK NODES