3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Jianfeng Cao, Ming-Kin Wong, Zhongying Zhao, Hong Yan

ABSTRACT

BACKGROUND: Understanding the cellular architecture is a fundamental problem in various biological studies. C. elegans is widely used as a model organism in these studies because of its unique fate determinations. In recent years, researchers have worked extensively on C. elegans to excavate the regulations of genes and proteins on cell mobility and communication. Although various algorithms have been proposed to analyze nucleus, cell shape features are not yet well recorded. This paper proposes a method to systematically analyze three-dimensional morphological cellular features. RESULTS: Three-dimensional Membrane Morphological Segmentation (3DMMS) makes use of several novel techniques, such as statistical intensity normalization, and region filters, to pre-process the cell images. We then segment membrane stacks based on watershed algorithms. 3DMMS achieves high robustness and precision over different time points (development stages). It is compared with two state-of-the-art algorithms, RACE and BCOMS. Quantitative analysis shows 3DMMS performs best with the average Dice ratio of 97.7% at six time points. In addition, 3DMMS also provides time series of internal and external shape features of C. elegans. CONCLUSION: We have developed the 3DMMS based technique for embryonic shape reconstruction at the single-cell level. With cells accurately segmented, 3DMMS makes it possible to study cellular shapes and bridge morphological features and biological expression in embryo research. More... »

PAGES

176

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2720-x

DOI

http://dx.doi.org/10.1186/s12859-019-2720-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113300186

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30961566


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong. jfcao3-c@my.cityu.edu.hk."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Jianfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hong Kong Baptist University", 
          "id": "https://www.grid.ac/institutes/grid.221309.b", 
          "name": [
            "Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wong", 
        "givenName": "Ming-Kin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hong Kong Baptist University", 
          "id": "https://www.grid.ac/institutes/grid.221309.b", 
          "name": [
            "Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Zhongying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Hong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.leu.2404296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000036175", 
          "https://doi.org/10.1038/sj.leu.2404296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2404296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000036175", 
          "https://doi.org/10.1038/sj.leu.2404296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002639854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59828-9_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011378005", 
          "https://doi.org/10.1007/978-3-642-59828-9_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59828-9_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011378005", 
          "https://doi.org/10.1007/978-3-642-59828-9_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.200209006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014602760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yexcr.2004.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014785416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016676591", 
          "https://doi.org/10.1186/1471-2105-7-275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021593317", 
          "https://doi.org/10.1038/nmeth.3036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-1606(83)90201-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024819784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025878882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cbir.2002.0857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026058643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027302002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dvg.22928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027442156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-5822.2004.00426.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032755408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037563696", 
          "https://doi.org/10.1038/nmeth.1472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037563696", 
          "https://doi.org/10.1038/nmeth.1472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042805607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1512156113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047185262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2015.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052008751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2015.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052008751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2012.2204190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061423805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2007.898006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061656571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5396.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.197160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067739798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.197160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067739798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.197160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067739798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12688/f1000research.10680.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084258056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12688/f1000research.10680.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084258056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2016.7591213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084498325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2016.7591443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084498536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1717-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086108674", 
          "https://doi.org/10.1186/s12859-017-1717-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1717-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086108674", 
          "https://doi.org/10.1186/s12859-017-1717-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2017.7950532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095122465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.34410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101834405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.34410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101834405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-33574-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107846835", 
          "https://doi.org/10.1038/s41598-018-33574-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smc.2018.00572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111522230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smc.2018.00572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111522230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smc.2018.00572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111522230"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Understanding the cellular architecture is a fundamental problem in various biological studies. C. elegans is widely used as a model organism in these studies because of its unique fate determinations. In recent years, researchers have worked extensively on C. elegans to excavate the regulations of genes and proteins on cell mobility and communication. Although various algorithms have been proposed to analyze nucleus, cell shape features are not yet well recorded. This paper proposes a method to systematically analyze three-dimensional morphological cellular features.\nRESULTS: Three-dimensional Membrane Morphological Segmentation (3DMMS) makes use of several novel techniques, such as statistical intensity normalization, and region filters, to pre-process the cell images. We then segment membrane stacks based on watershed algorithms. 3DMMS achieves high robustness and precision over different time points (development stages). It is compared with two state-of-the-art algorithms, RACE and BCOMS. Quantitative analysis shows 3DMMS performs best with the average Dice ratio of 97.7% at six time points. In addition, 3DMMS also provides time series of internal and external shape features of C. elegans.\nCONCLUSION: We have developed the 3DMMS based technique for embryonic shape reconstruction at the single-cell level. With cells accurately segmented, 3DMMS makes it possible to study cellular shapes and bridge morphological features and biological expression in embryo research.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2720-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo.", 
    "pagination": "176", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2720-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113300186"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30961566"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2720-x", 
      "https://app.dimensions.ai/details/publication/pub.1113300186"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91459_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2720-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2720-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2720-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2720-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2720-x'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      58 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2720-x schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nc79e53b1c6a949eba2d641b95cff0c13
4 schema:citation sg:pub.10.1007/978-3-642-59828-9_16
5 sg:pub.10.1038/nmeth.1472
6 sg:pub.10.1038/nmeth.3036
7 sg:pub.10.1038/s41598-018-33574-w
8 sg:pub.10.1038/sj.leu.2404296
9 sg:pub.10.1186/1471-2105-7-275
10 sg:pub.10.1186/s12859-017-1717-6
11 https://doi.org/10.1002/dvg.22928
12 https://doi.org/10.1006/cbir.2002.0857
13 https://doi.org/10.1016/0012-1606(83)90201-4
14 https://doi.org/10.1016/j.cell.2013.08.026
15 https://doi.org/10.1016/j.cell.2014.02.007
16 https://doi.org/10.1016/j.devcel.2015.12.028
17 https://doi.org/10.1016/j.yexcr.2004.08.017
18 https://doi.org/10.1073/pnas.1512156113
19 https://doi.org/10.1083/jcb.200209006
20 https://doi.org/10.1109/embc.2016.7591213
21 https://doi.org/10.1109/embc.2016.7591443
22 https://doi.org/10.1109/isbi.2017.7950532
23 https://doi.org/10.1109/msp.2012.2204190
24 https://doi.org/10.1109/smc.2018.00572
25 https://doi.org/10.1109/tip.2005.852790
26 https://doi.org/10.1109/titb.2007.898006
27 https://doi.org/10.1109/tsmc.1979.4310076
28 https://doi.org/10.1111/j.1462-5822.2004.00426.x
29 https://doi.org/10.1126/science.282.5396.2012
30 https://doi.org/10.12688/f1000research.10680.1
31 https://doi.org/10.1371/journal.pgen.1006077
32 https://doi.org/10.1534/genetics.116.197160
33 https://doi.org/10.7554/elife.34410
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description BACKGROUND: Understanding the cellular architecture is a fundamental problem in various biological studies. C. elegans is widely used as a model organism in these studies because of its unique fate determinations. In recent years, researchers have worked extensively on C. elegans to excavate the regulations of genes and proteins on cell mobility and communication. Although various algorithms have been proposed to analyze nucleus, cell shape features are not yet well recorded. This paper proposes a method to systematically analyze three-dimensional morphological cellular features. RESULTS: Three-dimensional Membrane Morphological Segmentation (3DMMS) makes use of several novel techniques, such as statistical intensity normalization, and region filters, to pre-process the cell images. We then segment membrane stacks based on watershed algorithms. 3DMMS achieves high robustness and precision over different time points (development stages). It is compared with two state-of-the-art algorithms, RACE and BCOMS. Quantitative analysis shows 3DMMS performs best with the average Dice ratio of 97.7% at six time points. In addition, 3DMMS also provides time series of internal and external shape features of C. elegans. CONCLUSION: We have developed the 3DMMS based technique for embryonic shape reconstruction at the single-cell level. With cells accurately segmented, 3DMMS makes it possible to study cellular shapes and bridge morphological features and biological expression in embryo research.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N162d3638ab31478eb43905ab60a205e0
41 N1698526bdf234423adb706ad12956212
42 sg:journal.1023786
43 schema:name 3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo.
44 schema:pagination 176
45 schema:productId N31002e57957f4a9c8aeb030460b3e984
46 N32274365f2b94954836de27f585850b2
47 N99814d3b12ba4b81ba4995f7e9c440ab
48 Naf589a97045b4c8487bdf96898550671
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300186
50 https://doi.org/10.1186/s12859-019-2720-x
51 schema:sdDatePublished 2019-04-15T09:03
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nd314124536e44bffba231dff0c1cb462
54 schema:url https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2720-x
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N148546ef9f1942deab50fc7c8d5c3362 rdf:first Ncc54bd7fc788465f981e9fc03344e6a6
59 rdf:rest rdf:nil
60 N162d3638ab31478eb43905ab60a205e0 schema:volumeNumber 20
61 rdf:type schema:PublicationVolume
62 N1698526bdf234423adb706ad12956212 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N31002e57957f4a9c8aeb030460b3e984 schema:name doi
65 schema:value 10.1186/s12859-019-2720-x
66 rdf:type schema:PropertyValue
67 N32274365f2b94954836de27f585850b2 schema:name dimensions_id
68 schema:value pub.1113300186
69 rdf:type schema:PropertyValue
70 N3fb72e166e094c7588c0a4f615361bcc rdf:first Nbcc8c736bd2249ffa2d61fd1480f72c0
71 rdf:rest N4364b531b2d64d9e973d62d5bceb4910
72 N4364b531b2d64d9e973d62d5bceb4910 rdf:first N9d3c8675dc1d4e7ebd538175721445f8
73 rdf:rest N148546ef9f1942deab50fc7c8d5c3362
74 N5e6dbfc955ce404b8cd1bac15edf0194 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
75 schema:familyName Cao
76 schema:givenName Jianfeng
77 rdf:type schema:Person
78 N99814d3b12ba4b81ba4995f7e9c440ab schema:name nlm_unique_id
79 schema:value 100965194
80 rdf:type schema:PropertyValue
81 N9d3c8675dc1d4e7ebd538175721445f8 schema:affiliation https://www.grid.ac/institutes/grid.221309.b
82 schema:familyName Zhao
83 schema:givenName Zhongying
84 rdf:type schema:Person
85 Naf589a97045b4c8487bdf96898550671 schema:name pubmed_id
86 schema:value 30961566
87 rdf:type schema:PropertyValue
88 Nbcc8c736bd2249ffa2d61fd1480f72c0 schema:affiliation https://www.grid.ac/institutes/grid.221309.b
89 schema:familyName Wong
90 schema:givenName Ming-Kin
91 rdf:type schema:Person
92 Nc79e53b1c6a949eba2d641b95cff0c13 rdf:first N5e6dbfc955ce404b8cd1bac15edf0194
93 rdf:rest N3fb72e166e094c7588c0a4f615361bcc
94 Ncc54bd7fc788465f981e9fc03344e6a6 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
95 schema:familyName Yan
96 schema:givenName Hong
97 rdf:type schema:Person
98 Nd314124536e44bffba231dff0c1cb462 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
101 schema:name Biological Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
104 schema:name Biochemistry and Cell Biology
105 rdf:type schema:DefinedTerm
106 sg:journal.1023786 schema:issn 1471-2105
107 schema:name BMC Bioinformatics
108 rdf:type schema:Periodical
109 sg:pub.10.1007/978-3-642-59828-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011378005
110 https://doi.org/10.1007/978-3-642-59828-9_16
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nmeth.1472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037563696
113 https://doi.org/10.1038/nmeth.1472
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nmeth.3036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021593317
116 https://doi.org/10.1038/nmeth.3036
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/s41598-018-33574-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1107846835
119 https://doi.org/10.1038/s41598-018-33574-w
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/sj.leu.2404296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000036175
122 https://doi.org/10.1038/sj.leu.2404296
123 rdf:type schema:CreativeWork
124 sg:pub.10.1186/1471-2105-7-275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016676591
125 https://doi.org/10.1186/1471-2105-7-275
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/s12859-017-1717-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086108674
128 https://doi.org/10.1186/s12859-017-1717-6
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/dvg.22928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027442156
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1006/cbir.2002.0857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026058643
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0012-1606(83)90201-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024819784
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cell.2013.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027302002
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.cell.2014.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002639854
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.devcel.2015.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052008751
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.yexcr.2004.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014785416
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.1512156113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047185262
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1083/jcb.200209006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014602760
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/embc.2016.7591213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084498325
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/embc.2016.7591443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084498536
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/isbi.2017.7950532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095122465
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/msp.2012.2204190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423805
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/smc.2018.00572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111522230
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tip.2005.852790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641214
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/titb.2007.898006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656571
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1462-5822.2004.00426.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032755408
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.282.5396.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563514
167 rdf:type schema:CreativeWork
168 https://doi.org/10.12688/f1000research.10680.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084258056
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1371/journal.pgen.1006077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025878882
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1534/genetics.116.197160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739798
173 rdf:type schema:CreativeWork
174 https://doi.org/10.7554/elife.34410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101834405
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.221309.b schema:alternateName Hong Kong Baptist University
177 schema:name Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
180 schema:name Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
181 Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong. jfcao3-c@my.cityu.edu.hk.
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...