RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Marco Di Salvo, Simone Puccio, Clelia Peano, Stephan Lacour, Pietro Alifano

ABSTRACT

BACKGROUND: In bacterial genomes, there are two mechanisms to terminate the DNA transcription: the "intrinsic" or Rho-independent termination and the Rho-dependent termination. Intrinsic terminators are characterized by a RNA hairpin followed by a run of 6-8 U residues relatively easy to identify using one of the numerous available prediction programs. In contrast, Rho-dependent termination is mediated by the Rho protein factor that, firstly, binds to ribosome-free mRNA in a site characterized by a C > G content and then reaches the RNA polymerase to induce its release. Conversely on intrinsic terminators, the computational prediction of Rho-dependent terminators in prokaryotes is a very difficult problem because the sequence features required for the function of Rho are complex and poorly defined. This is the reason why it still does not exist an exhaustive Rho-dependent terminators prediction program. RESULTS: In this study we introduce RhoTermPredict, the first published algorithm for an exhaustive Rho-dependent terminators prediction in bacterial genomes. RhoTermPredict identifies these elements based on a previously proposed consensus motif common to all Rho-dependent transcription terminators. It essentially searches for a 78 nt long RUT site characterized by a C > G content and with regularly spaced C residues, followed by a putative pause site for the RNA polymerase. We tested RhoTermPredict performances by using available genomic and transcriptomic data of the microorganism Escherichia coli K-12, both in limited-length sequences and in the whole-genome, and available genomic sequences from Bacillus subtilis 168 and Salmonella enterica LT2 genomes. We also estimated the overlap between the predictions of RhoTermPredict and those obtained by the predictor of intrinsic terminators ARNold webtool. Our results demonstrated that RhoTermPredict is a very performing algorithm both for limited-length sequences (F1-score obtained about 0.7) and for a genome-wide analysis. Furthermore the degree of overlap with ARNold predictions was very low. CONCLUSIONS: Our analysis shows that RhoTermPredict is a powerful tool for Rho-dependent terminators search in the three analyzed genomes and could fill this gap in computational genomics. We conclude that RhoTermPredict could be used in combination with an intrinsic terminators predictor in order to predict all the transcription terminators in bacterial genomes. More... »

PAGES

117

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x

DOI

http://dx.doi.org/10.1186/s12859-019-2704-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112606528

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30845912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Salvo", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humanitas Research Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417728.f", 
          "name": [
            "Humanitas Clinical and Research Center, Rozzano, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puccio", 
        "givenName": "Simone", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Humanitas Clinical and Research Center, Rozzano, Milan, Italy", 
            "Institute of Genetics and Biomedical Research UoS of Milan, National Research Council, Rozzano, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peano", 
        "givenName": "Clelia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Univ. Grenoble Alpes, CNRS, Inria, LIPhy (UMR5588), 38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lacour", 
        "givenName": "Stephan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alifano", 
        "givenName": "Pietro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-4781(02)00456-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000530271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(88)90058-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001771085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2016.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001988232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5331.1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003267570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007186662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1991.tb01864.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010407126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012715235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014237457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1253458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015321862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.196741.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017649543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.4.1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017788558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018248526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020450541", 
          "https://doi.org/10.1038/nature08669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020450541", 
          "https://doi.org/10.1038/nature08669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.271.35.21597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022092485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1251871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024854576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-biochem-060815-014844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027235423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.17.3583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027908050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1994.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031968606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034573894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(03)00554-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035696876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035716469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/13.10.3739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040261003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(99)80005-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041713676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2012.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045499956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2011.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045556418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(91)90239-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046402817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.28982-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046448846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2012.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-2-r22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049993443", 
          "https://doi.org/10.1186/gb-2007-8-2-r22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(88)90306-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052128291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(94)90828-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052537614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(94)90828-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052537614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00193a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055164660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.000244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060394148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/rna.8.1.13346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072310622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077206973", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128953", 
          "https://doi.org/10.1038/ncomms14731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090774680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-micro-030117-020432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090861529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-018-2049-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100855405", 
          "https://doi.org/10.1186/s12859-018-2049-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gky274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103253273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gky563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104479730"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: In bacterial genomes, there are two mechanisms to terminate the DNA transcription: the \"intrinsic\" or Rho-independent termination and the Rho-dependent termination. Intrinsic terminators are characterized by a RNA hairpin followed by a run of 6-8\u2009U residues relatively easy to identify using one of the numerous available prediction programs. In contrast, Rho-dependent termination is mediated by the Rho protein factor that, firstly, binds to ribosome-free mRNA in a site characterized by a C\u2009>\u2009G content and then reaches the RNA polymerase to induce its release. Conversely on intrinsic terminators, the computational prediction of Rho-dependent terminators in prokaryotes is a very difficult problem because the sequence features required for the function of Rho are complex and poorly defined. This is the reason why it still does not exist an exhaustive Rho-dependent terminators prediction program.\nRESULTS: In this study we introduce RhoTermPredict, the first published algorithm for an exhaustive Rho-dependent terminators prediction in bacterial genomes. RhoTermPredict identifies these elements based on a previously proposed consensus motif common to all Rho-dependent transcription terminators. It essentially searches for a 78\u2009nt long RUT site characterized by a C\u2009>\u2009G content and with regularly spaced C residues, followed by a putative pause site for the RNA polymerase. We tested RhoTermPredict performances by using available genomic and transcriptomic data of the microorganism Escherichia coli K-12, both in limited-length sequences and in the whole-genome, and available genomic sequences from Bacillus subtilis 168 and Salmonella enterica LT2 genomes. We also estimated the overlap between the predictions of RhoTermPredict and those obtained by the predictor of intrinsic terminators ARNold webtool. Our results demonstrated that RhoTermPredict is a very performing algorithm both for limited-length sequences (F1-score obtained about 0.7) and for a genome-wide analysis. Furthermore the degree of overlap with ARNold predictions was very low.\nCONCLUSIONS: Our analysis shows that RhoTermPredict is a powerful tool for Rho-dependent terminators search in the three analyzed genomes and could fill this gap in computational genomics. We conclude that RhoTermPredict could be used in combination with an intrinsic terminators predictor in order to predict all the transcription terminators in bacterial genomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2704-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases", 
    "pagination": "117", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a771ef59dea42432f437594f64a55613d12f4ad65757ccb2af0dbf3b5962d79f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30845912"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2704-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112606528"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2704-x", 
      "https://app.dimensions.ai/details/publication/pub.1112606528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78956_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-019-2704-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2704-x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N5d8a569759df42ababdbedef5b9835f5
4 schema:citation sg:pub.10.1038/nature08669
5 sg:pub.10.1038/ncomms14731
6 sg:pub.10.1186/gb-2007-8-2-r22
7 sg:pub.10.1186/s12859-018-2049-x
8 https://app.dimensions.ai/details/publication/pub.1077206973
9 https://doi.org/10.1006/jmbi.1994.1229
10 https://doi.org/10.1006/jmbi.2001.5102
11 https://doi.org/10.1016/0022-2836(88)90306-3
12 https://doi.org/10.1016/0092-8674(88)90058-x
13 https://doi.org/10.1016/0092-8674(91)90239-u
14 https://doi.org/10.1016/0378-1119(94)90828-1
15 https://doi.org/10.1016/j.cell.2006.04.032
16 https://doi.org/10.1016/j.jmb.2011.03.036
17 https://doi.org/10.1016/j.jmb.2012.07.027
18 https://doi.org/10.1016/j.mib.2012.12.003
19 https://doi.org/10.1016/j.tibs.2016.05.012
20 https://doi.org/10.1016/s0022-2836(99)80005-9
21 https://doi.org/10.1016/s0092-8674(03)00554-3
22 https://doi.org/10.1016/s0167-4781(02)00456-6
23 https://doi.org/10.1021/bi00193a016
24 https://doi.org/10.1073/pnas.89.4.1453
25 https://doi.org/10.1074/jbc.271.35.21597
26 https://doi.org/10.1093/nar/13.10.3739
27 https://doi.org/10.1093/nar/29.17.3583
28 https://doi.org/10.1093/nar/gkr168
29 https://doi.org/10.1093/nar/gkv085
30 https://doi.org/10.1093/nar/gky274
31 https://doi.org/10.1093/nar/gky563
32 https://doi.org/10.1099/mic.0.000244
33 https://doi.org/10.1099/mic.0.28982-0
34 https://doi.org/10.1101/gad.196741.112
35 https://doi.org/10.1111/j.1365-2958.1991.tb01864.x
36 https://doi.org/10.1126/science.1206848
37 https://doi.org/10.1126/science.1251871
38 https://doi.org/10.1126/science.1253458
39 https://doi.org/10.1126/science.277.5331.1453
40 https://doi.org/10.1146/annurev-biochem-060815-014844
41 https://doi.org/10.1146/annurev-micro-030117-020432
42 https://doi.org/10.1371/journal.pgen.1005962
43 https://doi.org/10.1371/journal.pgen.1006909
44 https://doi.org/10.4161/rna.8.1.13346
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description BACKGROUND: In bacterial genomes, there are two mechanisms to terminate the DNA transcription: the "intrinsic" or Rho-independent termination and the Rho-dependent termination. Intrinsic terminators are characterized by a RNA hairpin followed by a run of 6-8 U residues relatively easy to identify using one of the numerous available prediction programs. In contrast, Rho-dependent termination is mediated by the Rho protein factor that, firstly, binds to ribosome-free mRNA in a site characterized by a C > G content and then reaches the RNA polymerase to induce its release. Conversely on intrinsic terminators, the computational prediction of Rho-dependent terminators in prokaryotes is a very difficult problem because the sequence features required for the function of Rho are complex and poorly defined. This is the reason why it still does not exist an exhaustive Rho-dependent terminators prediction program. RESULTS: In this study we introduce RhoTermPredict, the first published algorithm for an exhaustive Rho-dependent terminators prediction in bacterial genomes. RhoTermPredict identifies these elements based on a previously proposed consensus motif common to all Rho-dependent transcription terminators. It essentially searches for a 78 nt long RUT site characterized by a C > G content and with regularly spaced C residues, followed by a putative pause site for the RNA polymerase. We tested RhoTermPredict performances by using available genomic and transcriptomic data of the microorganism Escherichia coli K-12, both in limited-length sequences and in the whole-genome, and available genomic sequences from Bacillus subtilis 168 and Salmonella enterica LT2 genomes. We also estimated the overlap between the predictions of RhoTermPredict and those obtained by the predictor of intrinsic terminators ARNold webtool. Our results demonstrated that RhoTermPredict is a very performing algorithm both for limited-length sequences (F1-score obtained about 0.7) and for a genome-wide analysis. Furthermore the degree of overlap with ARNold predictions was very low. CONCLUSIONS: Our analysis shows that RhoTermPredict is a powerful tool for Rho-dependent terminators search in the three analyzed genomes and could fill this gap in computational genomics. We conclude that RhoTermPredict could be used in combination with an intrinsic terminators predictor in order to predict all the transcription terminators in bacterial genomes.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N8d149f08a2924f58b277b8c8e59fdd0b
52 Nc5d1ffdae2ad4fd884767abc59f4dfc8
53 sg:journal.1023786
54 schema:name RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases
55 schema:pagination 117
56 schema:productId N57d8d9d16ddd418f890a420c02bb6db7
57 N8bc08bf7a8b44808b1578b09b2800619
58 N9dd0caab5c4a4ee9805981c66d837eda
59 Na2cb05e337cb470f9912feee38425ee6
60 Nf307898063bc49b4bc50ea53823eaca8
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112606528
62 https://doi.org/10.1186/s12859-019-2704-x
63 schema:sdDatePublished 2019-04-11T13:19
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N65ee146bbd3e4891a1382bbc3983d2c7
66 schema:url https://link.springer.com/10.1186%2Fs12859-019-2704-x
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N08d4cc5e43c84c329bc9b3c1ff89ccd1 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
71 schema:familyName Alifano
72 schema:givenName Pietro
73 rdf:type schema:Person
74 N1ed6453a0b634c94a1afe1db2b79b345 rdf:first Nf76e3520017043c6b117cad1d22ae32a
75 rdf:rest N9a994e4b6a1240039223721bd9dacafc
76 N3309bd7e222a42cca762345ea157d1b9 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
77 schema:familyName Lacour
78 schema:givenName Stephan
79 rdf:type schema:Person
80 N57d8d9d16ddd418f890a420c02bb6db7 schema:name nlm_unique_id
81 schema:value 100965194
82 rdf:type schema:PropertyValue
83 N5d8a569759df42ababdbedef5b9835f5 rdf:first N7ec8596cd79f4e928160a9cf18fc1844
84 rdf:rest Nbd974aad25e247b7a558162b7dec3af3
85 N65ee146bbd3e4891a1382bbc3983d2c7 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N7ec8596cd79f4e928160a9cf18fc1844 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
88 schema:familyName Di Salvo
89 schema:givenName Marco
90 rdf:type schema:Person
91 N8bc08bf7a8b44808b1578b09b2800619 schema:name pubmed_id
92 schema:value 30845912
93 rdf:type schema:PropertyValue
94 N8d149f08a2924f58b277b8c8e59fdd0b schema:volumeNumber 20
95 rdf:type schema:PublicationVolume
96 N933181df0e5642a2a7fc54b0cf718793 rdf:first N08d4cc5e43c84c329bc9b3c1ff89ccd1
97 rdf:rest rdf:nil
98 N9a994e4b6a1240039223721bd9dacafc rdf:first N3309bd7e222a42cca762345ea157d1b9
99 rdf:rest N933181df0e5642a2a7fc54b0cf718793
100 N9dd0caab5c4a4ee9805981c66d837eda schema:name doi
101 schema:value 10.1186/s12859-019-2704-x
102 rdf:type schema:PropertyValue
103 Na2cb05e337cb470f9912feee38425ee6 schema:name dimensions_id
104 schema:value pub.1112606528
105 rdf:type schema:PropertyValue
106 Nbd974aad25e247b7a558162b7dec3af3 rdf:first Nd85daadf392e4e058219e9e74bc721ac
107 rdf:rest N1ed6453a0b634c94a1afe1db2b79b345
108 Nc5d1ffdae2ad4fd884767abc59f4dfc8 schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 Nd85daadf392e4e058219e9e74bc721ac schema:affiliation https://www.grid.ac/institutes/grid.417728.f
111 schema:familyName Puccio
112 schema:givenName Simone
113 rdf:type schema:Person
114 Nf307898063bc49b4bc50ea53823eaca8 schema:name readcube_id
115 schema:value a771ef59dea42432f437594f64a55613d12f4ad65757ccb2af0dbf3b5962d79f
116 rdf:type schema:PropertyValue
117 Nf76e3520017043c6b117cad1d22ae32a schema:affiliation https://www.grid.ac/institutes/grid.5326.2
118 schema:familyName Peano
119 schema:givenName Clelia
120 rdf:type schema:Person
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
125 schema:name Genetics
126 rdf:type schema:DefinedTerm
127 sg:journal.1023786 schema:issn 1471-2105
128 schema:name BMC Bioinformatics
129 rdf:type schema:Periodical
130 sg:pub.10.1038/nature08669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020450541
131 https://doi.org/10.1038/nature08669
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/ncomms14731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128953
134 https://doi.org/10.1038/ncomms14731
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/gb-2007-8-2-r22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049993443
137 https://doi.org/10.1186/gb-2007-8-2-r22
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/s12859-018-2049-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100855405
140 https://doi.org/10.1186/s12859-018-2049-x
141 rdf:type schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1077206973 schema:CreativeWork
143 https://doi.org/10.1006/jmbi.1994.1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031968606
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1006/jmbi.2001.5102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018248526
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0022-2836(88)90306-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052128291
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0092-8674(88)90058-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001771085
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0092-8674(91)90239-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1046402817
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0378-1119(94)90828-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052537614
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.cell.2006.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034573894
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jmb.2011.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045556418
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jmb.2012.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049382952
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.mib.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045499956
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.tibs.2016.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001988232
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0022-2836(99)80005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041713676
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0092-8674(03)00554-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035696876
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0167-4781(02)00456-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000530271
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/bi00193a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055164660
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.89.4.1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017788558
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1074/jbc.271.35.21597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022092485
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/13.10.3739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040261003
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/nar/29.17.3583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027908050
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/nar/gkr168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035716469
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/nar/gkv085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014237457
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gky274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103253273
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/nar/gky563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104479730
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1099/mic.0.000244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060394148
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1099/mic.0.28982-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046448846
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1101/gad.196741.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017649543
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1365-2958.1991.tb01864.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010407126
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.1206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012715235
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1126/science.1251871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024854576
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.1253458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015321862
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.277.5331.1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003267570
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1146/annurev-biochem-060815-014844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027235423
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1146/annurev-micro-030117-020432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090861529
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1371/journal.pgen.1005962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007186662
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1371/journal.pgen.1006909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090774680
212 rdf:type schema:CreativeWork
213 https://doi.org/10.4161/rna.8.1.13346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072310622
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.417728.f schema:alternateName Humanitas Research Hospital
216 schema:name Humanitas Clinical and Research Center, Rozzano, Milan, Italy
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
219 schema:name Univ. Grenoble Alpes, CNRS, Inria, LIPhy (UMR5588), 38000, Grenoble, France
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.5326.2 schema:alternateName National Research Council
222 schema:name Humanitas Clinical and Research Center, Rozzano, Milan, Italy
223 Institute of Genetics and Biomedical Research UoS of Milan, National Research Council, Rozzano, Milan, Italy
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
226 schema:name Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...