RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Marco Di Salvo, Simone Puccio, Clelia Peano, Stephan Lacour, Pietro Alifano

ABSTRACT

BACKGROUND: In bacterial genomes, there are two mechanisms to terminate the DNA transcription: the "intrinsic" or Rho-independent termination and the Rho-dependent termination. Intrinsic terminators are characterized by a RNA hairpin followed by a run of 6-8 U residues relatively easy to identify using one of the numerous available prediction programs. In contrast, Rho-dependent termination is mediated by the Rho protein factor that, firstly, binds to ribosome-free mRNA in a site characterized by a C > G content and then reaches the RNA polymerase to induce its release. Conversely on intrinsic terminators, the computational prediction of Rho-dependent terminators in prokaryotes is a very difficult problem because the sequence features required for the function of Rho are complex and poorly defined. This is the reason why it still does not exist an exhaustive Rho-dependent terminators prediction program. RESULTS: In this study we introduce RhoTermPredict, the first published algorithm for an exhaustive Rho-dependent terminators prediction in bacterial genomes. RhoTermPredict identifies these elements based on a previously proposed consensus motif common to all Rho-dependent transcription terminators. It essentially searches for a 78 nt long RUT site characterized by a C > G content and with regularly spaced C residues, followed by a putative pause site for the RNA polymerase. We tested RhoTermPredict performances by using available genomic and transcriptomic data of the microorganism Escherichia coli K-12, both in limited-length sequences and in the whole-genome, and available genomic sequences from Bacillus subtilis 168 and Salmonella enterica LT2 genomes. We also estimated the overlap between the predictions of RhoTermPredict and those obtained by the predictor of intrinsic terminators ARNold webtool. Our results demonstrated that RhoTermPredict is a very performing algorithm both for limited-length sequences (F1-score obtained about 0.7) and for a genome-wide analysis. Furthermore the degree of overlap with ARNold predictions was very low. CONCLUSIONS: Our analysis shows that RhoTermPredict is a powerful tool for Rho-dependent terminators search in the three analyzed genomes and could fill this gap in computational genomics. We conclude that RhoTermPredict could be used in combination with an intrinsic terminators predictor in order to predict all the transcription terminators in bacterial genomes. More... »

PAGES

117

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x

DOI

http://dx.doi.org/10.1186/s12859-019-2704-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112606528

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30845912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Salvo", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humanitas Research Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417728.f", 
          "name": [
            "Humanitas Clinical and Research Center, Rozzano, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puccio", 
        "givenName": "Simone", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Humanitas Clinical and Research Center, Rozzano, Milan, Italy", 
            "Institute of Genetics and Biomedical Research UoS of Milan, National Research Council, Rozzano, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peano", 
        "givenName": "Clelia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Univ. Grenoble Alpes, CNRS, Inria, LIPhy (UMR5588), 38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lacour", 
        "givenName": "Stephan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alifano", 
        "givenName": "Pietro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-4781(02)00456-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000530271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(88)90058-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001771085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2016.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001988232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5331.1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003267570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007186662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1991.tb01864.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010407126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012715235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014237457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1253458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015321862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.196741.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017649543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.4.1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017788558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018248526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020450541", 
          "https://doi.org/10.1038/nature08669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020450541", 
          "https://doi.org/10.1038/nature08669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.271.35.21597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022092485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1251871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024854576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-biochem-060815-014844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027235423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.17.3583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027908050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1994.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031968606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034573894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(03)00554-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035696876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035716469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/13.10.3739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040261003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(99)80005-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041713676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2012.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045499956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2011.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045556418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(91)90239-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046402817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.28982-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046448846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2012.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-2-r22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049993443", 
          "https://doi.org/10.1186/gb-2007-8-2-r22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(88)90306-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052128291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(94)90828-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052537614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(94)90828-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052537614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00193a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055164660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.000244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060394148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/rna.8.1.13346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072310622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077206973", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128953", 
          "https://doi.org/10.1038/ncomms14731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090774680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-micro-030117-020432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090861529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-018-2049-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100855405", 
          "https://doi.org/10.1186/s12859-018-2049-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gky274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103253273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gky563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104479730"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: In bacterial genomes, there are two mechanisms to terminate the DNA transcription: the \"intrinsic\" or Rho-independent termination and the Rho-dependent termination. Intrinsic terminators are characterized by a RNA hairpin followed by a run of 6-8\u2009U residues relatively easy to identify using one of the numerous available prediction programs. In contrast, Rho-dependent termination is mediated by the Rho protein factor that, firstly, binds to ribosome-free mRNA in a site characterized by a C\u2009>\u2009G content and then reaches the RNA polymerase to induce its release. Conversely on intrinsic terminators, the computational prediction of Rho-dependent terminators in prokaryotes is a very difficult problem because the sequence features required for the function of Rho are complex and poorly defined. This is the reason why it still does not exist an exhaustive Rho-dependent terminators prediction program.\nRESULTS: In this study we introduce RhoTermPredict, the first published algorithm for an exhaustive Rho-dependent terminators prediction in bacterial genomes. RhoTermPredict identifies these elements based on a previously proposed consensus motif common to all Rho-dependent transcription terminators. It essentially searches for a 78\u2009nt long RUT site characterized by a C\u2009>\u2009G content and with regularly spaced C residues, followed by a putative pause site for the RNA polymerase. We tested RhoTermPredict performances by using available genomic and transcriptomic data of the microorganism Escherichia coli K-12, both in limited-length sequences and in the whole-genome, and available genomic sequences from Bacillus subtilis 168 and Salmonella enterica LT2 genomes. We also estimated the overlap between the predictions of RhoTermPredict and those obtained by the predictor of intrinsic terminators ARNold webtool. Our results demonstrated that RhoTermPredict is a very performing algorithm both for limited-length sequences (F1-score obtained about 0.7) and for a genome-wide analysis. Furthermore the degree of overlap with ARNold predictions was very low.\nCONCLUSIONS: Our analysis shows that RhoTermPredict is a powerful tool for Rho-dependent terminators search in the three analyzed genomes and could fill this gap in computational genomics. We conclude that RhoTermPredict could be used in combination with an intrinsic terminators predictor in order to predict all the transcription terminators in bacterial genomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2704-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases", 
    "pagination": "117", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a771ef59dea42432f437594f64a55613d12f4ad65757ccb2af0dbf3b5962d79f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30845912"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2704-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112606528"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2704-x", 
      "https://app.dimensions.ai/details/publication/pub.1112606528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78956_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-019-2704-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2704-x'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2704-x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nadac8c959b294322b52c04f11ddbe11f
4 schema:citation sg:pub.10.1038/nature08669
5 sg:pub.10.1038/ncomms14731
6 sg:pub.10.1186/gb-2007-8-2-r22
7 sg:pub.10.1186/s12859-018-2049-x
8 https://app.dimensions.ai/details/publication/pub.1077206973
9 https://doi.org/10.1006/jmbi.1994.1229
10 https://doi.org/10.1006/jmbi.2001.5102
11 https://doi.org/10.1016/0022-2836(88)90306-3
12 https://doi.org/10.1016/0092-8674(88)90058-x
13 https://doi.org/10.1016/0092-8674(91)90239-u
14 https://doi.org/10.1016/0378-1119(94)90828-1
15 https://doi.org/10.1016/j.cell.2006.04.032
16 https://doi.org/10.1016/j.jmb.2011.03.036
17 https://doi.org/10.1016/j.jmb.2012.07.027
18 https://doi.org/10.1016/j.mib.2012.12.003
19 https://doi.org/10.1016/j.tibs.2016.05.012
20 https://doi.org/10.1016/s0022-2836(99)80005-9
21 https://doi.org/10.1016/s0092-8674(03)00554-3
22 https://doi.org/10.1016/s0167-4781(02)00456-6
23 https://doi.org/10.1021/bi00193a016
24 https://doi.org/10.1073/pnas.89.4.1453
25 https://doi.org/10.1074/jbc.271.35.21597
26 https://doi.org/10.1093/nar/13.10.3739
27 https://doi.org/10.1093/nar/29.17.3583
28 https://doi.org/10.1093/nar/gkr168
29 https://doi.org/10.1093/nar/gkv085
30 https://doi.org/10.1093/nar/gky274
31 https://doi.org/10.1093/nar/gky563
32 https://doi.org/10.1099/mic.0.000244
33 https://doi.org/10.1099/mic.0.28982-0
34 https://doi.org/10.1101/gad.196741.112
35 https://doi.org/10.1111/j.1365-2958.1991.tb01864.x
36 https://doi.org/10.1126/science.1206848
37 https://doi.org/10.1126/science.1251871
38 https://doi.org/10.1126/science.1253458
39 https://doi.org/10.1126/science.277.5331.1453
40 https://doi.org/10.1146/annurev-biochem-060815-014844
41 https://doi.org/10.1146/annurev-micro-030117-020432
42 https://doi.org/10.1371/journal.pgen.1005962
43 https://doi.org/10.1371/journal.pgen.1006909
44 https://doi.org/10.4161/rna.8.1.13346
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description BACKGROUND: In bacterial genomes, there are two mechanisms to terminate the DNA transcription: the "intrinsic" or Rho-independent termination and the Rho-dependent termination. Intrinsic terminators are characterized by a RNA hairpin followed by a run of 6-8 U residues relatively easy to identify using one of the numerous available prediction programs. In contrast, Rho-dependent termination is mediated by the Rho protein factor that, firstly, binds to ribosome-free mRNA in a site characterized by a C > G content and then reaches the RNA polymerase to induce its release. Conversely on intrinsic terminators, the computational prediction of Rho-dependent terminators in prokaryotes is a very difficult problem because the sequence features required for the function of Rho are complex and poorly defined. This is the reason why it still does not exist an exhaustive Rho-dependent terminators prediction program. RESULTS: In this study we introduce RhoTermPredict, the first published algorithm for an exhaustive Rho-dependent terminators prediction in bacterial genomes. RhoTermPredict identifies these elements based on a previously proposed consensus motif common to all Rho-dependent transcription terminators. It essentially searches for a 78 nt long RUT site characterized by a C > G content and with regularly spaced C residues, followed by a putative pause site for the RNA polymerase. We tested RhoTermPredict performances by using available genomic and transcriptomic data of the microorganism Escherichia coli K-12, both in limited-length sequences and in the whole-genome, and available genomic sequences from Bacillus subtilis 168 and Salmonella enterica LT2 genomes. We also estimated the overlap between the predictions of RhoTermPredict and those obtained by the predictor of intrinsic terminators ARNold webtool. Our results demonstrated that RhoTermPredict is a very performing algorithm both for limited-length sequences (F1-score obtained about 0.7) and for a genome-wide analysis. Furthermore the degree of overlap with ARNold predictions was very low. CONCLUSIONS: Our analysis shows that RhoTermPredict is a powerful tool for Rho-dependent terminators search in the three analyzed genomes and could fill this gap in computational genomics. We conclude that RhoTermPredict could be used in combination with an intrinsic terminators predictor in order to predict all the transcription terminators in bacterial genomes.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N81f6c46853964d8b9261e2f53f6c5829
52 Nc1755697cd1e49d3a33449541ada8061
53 sg:journal.1023786
54 schema:name RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases
55 schema:pagination 117
56 schema:productId N0e82aaee845d4d089d35d791638c8167
57 N3d7014bb34ba42e898ca47d6fa87f547
58 N5ec4e505aa9745f191188d65770ca23a
59 Ncf7baf0eb34b425cac5eea0e6d842339
60 Nf2ea47c8345e40e8bc17661523b80b0c
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112606528
62 https://doi.org/10.1186/s12859-019-2704-x
63 schema:sdDatePublished 2019-04-11T13:19
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N3b3024ff04514825be8f82cec6aaac49
66 schema:url https://link.springer.com/10.1186%2Fs12859-019-2704-x
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0e82aaee845d4d089d35d791638c8167 schema:name dimensions_id
71 schema:value pub.1112606528
72 rdf:type schema:PropertyValue
73 N1d23723e05454332a243e84e99f2e295 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
74 schema:familyName Alifano
75 schema:givenName Pietro
76 rdf:type schema:Person
77 N29f508ba23964e9aaab1cb08aafbaa25 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
78 schema:familyName Di Salvo
79 schema:givenName Marco
80 rdf:type schema:Person
81 N2f6f8eae92e04b46a6b01f0394b33933 schema:affiliation https://www.grid.ac/institutes/grid.417728.f
82 schema:familyName Puccio
83 schema:givenName Simone
84 rdf:type schema:Person
85 N3b3024ff04514825be8f82cec6aaac49 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N3d7014bb34ba42e898ca47d6fa87f547 schema:name readcube_id
88 schema:value a771ef59dea42432f437594f64a55613d12f4ad65757ccb2af0dbf3b5962d79f
89 rdf:type schema:PropertyValue
90 N5ec4e505aa9745f191188d65770ca23a schema:name doi
91 schema:value 10.1186/s12859-019-2704-x
92 rdf:type schema:PropertyValue
93 N68a02c5959a64aeba0e57105e9885aab rdf:first Nc43ec058471248cc8045eb473dabb2a7
94 rdf:rest N7d25d8ce235b45228031f04a792c0a50
95 N7d25d8ce235b45228031f04a792c0a50 rdf:first N1d23723e05454332a243e84e99f2e295
96 rdf:rest rdf:nil
97 N81f6c46853964d8b9261e2f53f6c5829 schema:volumeNumber 20
98 rdf:type schema:PublicationVolume
99 N99d8139596464e9fa619cd88a164ecf3 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
100 schema:familyName Peano
101 schema:givenName Clelia
102 rdf:type schema:Person
103 Nadac8c959b294322b52c04f11ddbe11f rdf:first N29f508ba23964e9aaab1cb08aafbaa25
104 rdf:rest Neb5e14fe8a3740d1b8b75b791a1a4441
105 Nc1755697cd1e49d3a33449541ada8061 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 Nc43ec058471248cc8045eb473dabb2a7 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
108 schema:familyName Lacour
109 schema:givenName Stephan
110 rdf:type schema:Person
111 Ncf7baf0eb34b425cac5eea0e6d842339 schema:name nlm_unique_id
112 schema:value 100965194
113 rdf:type schema:PropertyValue
114 Neb5e14fe8a3740d1b8b75b791a1a4441 rdf:first N2f6f8eae92e04b46a6b01f0394b33933
115 rdf:rest Nfd326721e7bb46bf939d710d42a8c832
116 Nf2ea47c8345e40e8bc17661523b80b0c schema:name pubmed_id
117 schema:value 30845912
118 rdf:type schema:PropertyValue
119 Nfd326721e7bb46bf939d710d42a8c832 rdf:first N99d8139596464e9fa619cd88a164ecf3
120 rdf:rest N68a02c5959a64aeba0e57105e9885aab
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
125 schema:name Genetics
126 rdf:type schema:DefinedTerm
127 sg:journal.1023786 schema:issn 1471-2105
128 schema:name BMC Bioinformatics
129 rdf:type schema:Periodical
130 sg:pub.10.1038/nature08669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020450541
131 https://doi.org/10.1038/nature08669
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/ncomms14731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128953
134 https://doi.org/10.1038/ncomms14731
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/gb-2007-8-2-r22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049993443
137 https://doi.org/10.1186/gb-2007-8-2-r22
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/s12859-018-2049-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100855405
140 https://doi.org/10.1186/s12859-018-2049-x
141 rdf:type schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1077206973 schema:CreativeWork
143 https://doi.org/10.1006/jmbi.1994.1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031968606
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1006/jmbi.2001.5102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018248526
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0022-2836(88)90306-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052128291
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0092-8674(88)90058-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001771085
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0092-8674(91)90239-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1046402817
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0378-1119(94)90828-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052537614
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.cell.2006.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034573894
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jmb.2011.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045556418
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jmb.2012.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049382952
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.mib.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045499956
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.tibs.2016.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001988232
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0022-2836(99)80005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041713676
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0092-8674(03)00554-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035696876
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0167-4781(02)00456-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000530271
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/bi00193a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055164660
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.89.4.1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017788558
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1074/jbc.271.35.21597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022092485
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/13.10.3739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040261003
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/nar/29.17.3583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027908050
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/nar/gkr168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035716469
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/nar/gkv085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014237457
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gky274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103253273
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/nar/gky563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104479730
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1099/mic.0.000244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060394148
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1099/mic.0.28982-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046448846
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1101/gad.196741.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017649543
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1365-2958.1991.tb01864.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010407126
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.1206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012715235
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1126/science.1251871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024854576
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.1253458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015321862
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.277.5331.1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003267570
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1146/annurev-biochem-060815-014844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027235423
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1146/annurev-micro-030117-020432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090861529
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1371/journal.pgen.1005962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007186662
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1371/journal.pgen.1006909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090774680
212 rdf:type schema:CreativeWork
213 https://doi.org/10.4161/rna.8.1.13346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072310622
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.417728.f schema:alternateName Humanitas Research Hospital
216 schema:name Humanitas Clinical and Research Center, Rozzano, Milan, Italy
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
219 schema:name Univ. Grenoble Alpes, CNRS, Inria, LIPhy (UMR5588), 38000, Grenoble, France
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.5326.2 schema:alternateName National Research Council
222 schema:name Humanitas Clinical and Research Center, Rozzano, Milan, Italy
223 Institute of Genetics and Biomedical Research UoS of Milan, National Research Council, Rozzano, Milan, Italy
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
226 schema:name Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...