SEQprocess: a modularized and customizable pipeline framework for NGS processing in R package View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Taewoon Joo, Ji-Hye Choi, Ji-Hye Lee, So Eun Park, Youngsic Jeon, Sae Hoon Jung, Hyun Goo Woo

ABSTRACT

BACKGROUNDS: Next-Generation Sequencing (NGS) is now widely used in biomedical research for various applications. Processing of NGS data requires multiple programs and customization of the processing pipelines according to the data platforms. However, rapid progress of the NGS applications and processing methods urgently require prompt update of the pipelines. Recent clinical applications of NGS technology such as cell-free DNA, cancer panel, or exosomal RNA sequencing data also require appropriate customization of the processing pipelines. Here, we developed SEQprocess, a highly extendable framework that can provide standard as well as customized pipelines for NGS data processing. RESULTS: SEQprocess was implemented in an R package with fully modularized steps for data processing that can be easily customized. Currently, six pre-customized pipelines are provided that can be easily executed by non-experts such as biomedical scientists, including the National Cancer Institute's (NCI) Genomic Data Commons (GDC) pipelines as well as the popularly used pipelines for variant calling (e.g., GATK) and estimation of allele frequency, RNA abundance (e.g., TopHat2/Cufflink), or DNA copy numbers (e.g., Sequenza). In addition, optimized pipelines for the clinical sequencing from cell-free DNA or miR-Seq are also provided. The processed data were transformed into R package-compatible data type 'ExpressionSet' or 'SummarizedExperiment', which could facilitate subsequent data analysis within R environment. Finally, an automated report summarizing the processing steps are also provided to ensure reproducibility of the NGS data analysis. CONCLUSION: SEQprocess provides a highly extendable and R compatible framework that can manage customized and reproducible pipelines for handling multiple legacy NGS processing tools. More... »

PAGES

90

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2676-x

DOI

http://dx.doi.org/10.1186/s12859-019-2676-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112259588

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30786880


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Workflow", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 16499, Suwon, Republic of Korea", 
            "Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Taewoon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 16499, Suwon, Republic of Korea", 
            "Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Ji-Hye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 16499, Suwon, Republic of Korea", 
            "Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Ji-Hye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 16499, Suwon, Republic of Korea", 
            "Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "So Eun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea", 
            "BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeon", 
        "givenName": "Youngsic", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Ajou University School of Medicine, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Sae Hoon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 16499, Suwon, Republic of Korea", 
            "Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woo", 
        "givenName": "Hyun Goo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000466381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0974-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005070991", 
          "https://doi.org/10.1186/s13059-016-0974-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-0974-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005070991", 
          "https://doi.org/10.1186/s13059-016-0974-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015459845", 
          "https://doi.org/10.1186/gb-2013-14-4-r36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdu479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023590712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036669693", 
          "https://doi.org/10.1186/s13059-016-1029-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036669693", 
          "https://doi.org/10.1186/s13059-016-1029-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5808/gi.2012.10.2.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038715140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.129684.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038753295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-0902-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039809203", 
          "https://doi.org/10.1186/s12859-016-0902-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-0902-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039809203", 
          "https://doi.org/10.1186/s12859-016-0902-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1241-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042168201", 
          "https://doi.org/10.1186/s12859-016-1241-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1241-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042168201", 
          "https://doi.org/10.1186/s12859-016-1241-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050075164", 
          "https://doi.org/10.1038/nmeth.3252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053282140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14806/ej.17.1.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067372670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btx540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091365178"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUNDS: Next-Generation Sequencing (NGS) is now widely used in biomedical research for various applications. Processing of NGS data requires multiple programs and customization of the processing pipelines according to the data platforms. However, rapid progress of the NGS applications and processing methods urgently require prompt update of the pipelines. Recent clinical applications of NGS technology such as cell-free DNA, cancer panel, or exosomal RNA sequencing data also require appropriate customization of the processing pipelines. Here, we developed SEQprocess, a highly extendable framework that can provide standard as well as customized pipelines for NGS data processing.\nRESULTS: SEQprocess was implemented in an R package with fully modularized steps for data processing that can be easily customized. Currently, six pre-customized pipelines are provided that can be easily executed by non-experts such as biomedical scientists, including the National Cancer Institute's (NCI) Genomic Data Commons (GDC) pipelines as well as the popularly used pipelines for variant calling (e.g., GATK) and estimation of allele frequency, RNA abundance (e.g., TopHat2/Cufflink), or DNA copy numbers (e.g., Sequenza). In addition, optimized pipelines for the clinical sequencing from cell-free DNA or miR-Seq are also provided. The processed data were transformed into R package-compatible data type 'ExpressionSet' or 'SummarizedExperiment', which could facilitate subsequent data analysis within R environment. Finally, an automated report summarizing the processing steps are also provided to ensure reproducibility of the NGS data analysis.\nCONCLUSION: SEQprocess provides a highly extendable and R compatible framework that can manage customized and reproducible pipelines for handling multiple legacy NGS processing tools.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2676-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "SEQprocess: a modularized and customizable pipeline framework for NGS processing in R package", 
    "pagination": "90", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcd4cad85e779cc610657f76a5e8902cc2b6dfb106c4e4b86d47e70283695b95"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30786880"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2676-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112259588"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2676-x", 
      "https://app.dimensions.ai/details/publication/pub.1112259588"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112036_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-019-2676-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2676-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2676-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2676-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2676-x'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      55 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2676-x schema:about N007991b51fdf45c0bffc3ab85c2b21eb
2 N0cfa1d61019d4121b3d7d74d158dd037
3 Na32e97736bd84e80873102337e92542a
4 Nbe26c1a02d9d455f8c37f917926b61e9
5 Ne0b14c2a39c84424ba04698c52c8cd66
6 Nfc5293a78c3d4bb88fbf28e38b5ec5a2
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N20330e4999d843e38729f56803bfcd56
10 schema:citation sg:pub.10.1038/nbt.1621
11 sg:pub.10.1038/nmeth.1923
12 sg:pub.10.1038/nmeth.3252
13 sg:pub.10.1186/gb-2013-14-4-r36
14 sg:pub.10.1186/s12859-016-0902-3
15 sg:pub.10.1186/s12859-016-1241-0
16 sg:pub.10.1186/s13059-016-0974-4
17 sg:pub.10.1186/s13059-016-1029-6
18 https://doi.org/10.1093/annonc/mdu479
19 https://doi.org/10.1093/bioinformatics/btp324
20 https://doi.org/10.1093/bioinformatics/btp352
21 https://doi.org/10.1093/bioinformatics/btr665
22 https://doi.org/10.1093/bioinformatics/bts635
23 https://doi.org/10.1093/bioinformatics/btu638
24 https://doi.org/10.1093/bioinformatics/btx540
25 https://doi.org/10.1093/nar/gkq603
26 https://doi.org/10.1101/gr.107524.110
27 https://doi.org/10.1101/gr.129684.111
28 https://doi.org/10.14806/ej.17.1.200
29 https://doi.org/10.5808/gi.2012.10.2.69
30 schema:datePublished 2019-12
31 schema:datePublishedReg 2019-12-01
32 schema:description BACKGROUNDS: Next-Generation Sequencing (NGS) is now widely used in biomedical research for various applications. Processing of NGS data requires multiple programs and customization of the processing pipelines according to the data platforms. However, rapid progress of the NGS applications and processing methods urgently require prompt update of the pipelines. Recent clinical applications of NGS technology such as cell-free DNA, cancer panel, or exosomal RNA sequencing data also require appropriate customization of the processing pipelines. Here, we developed SEQprocess, a highly extendable framework that can provide standard as well as customized pipelines for NGS data processing. RESULTS: SEQprocess was implemented in an R package with fully modularized steps for data processing that can be easily customized. Currently, six pre-customized pipelines are provided that can be easily executed by non-experts such as biomedical scientists, including the National Cancer Institute's (NCI) Genomic Data Commons (GDC) pipelines as well as the popularly used pipelines for variant calling (e.g., GATK) and estimation of allele frequency, RNA abundance (e.g., TopHat2/Cufflink), or DNA copy numbers (e.g., Sequenza). In addition, optimized pipelines for the clinical sequencing from cell-free DNA or miR-Seq are also provided. The processed data were transformed into R package-compatible data type 'ExpressionSet' or 'SummarizedExperiment', which could facilitate subsequent data analysis within R environment. Finally, an automated report summarizing the processing steps are also provided to ensure reproducibility of the NGS data analysis. CONCLUSION: SEQprocess provides a highly extendable and R compatible framework that can manage customized and reproducible pipelines for handling multiple legacy NGS processing tools.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N69b94832171f4426af98f8736bd119f3
37 N7cd72c7573c647b5a3c0efc3392cb1ab
38 sg:journal.1023786
39 schema:name SEQprocess: a modularized and customizable pipeline framework for NGS processing in R package
40 schema:pagination 90
41 schema:productId N6cec4ef155eb46b38b14f993e2f62c42
42 N869b4e23c41940d6871dc9352ae0f067
43 N95486b1c55ae4c46b50dddd37dba05a9
44 Nfc743d0d2a294a68a4a3faad22e06503
45 Nfed3f7e39d41402b8d99e7482ec27b39
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112259588
47 https://doi.org/10.1186/s12859-019-2676-x
48 schema:sdDatePublished 2019-04-11T13:04
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nd36462ca46e04e6585f7c6adf268065f
51 schema:url https://link.springer.com/10.1186%2Fs12859-019-2676-x
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N007991b51fdf45c0bffc3ab85c2b21eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Humans
57 rdf:type schema:DefinedTerm
58 N066df188a9e84258aa3284692a6541c5 rdf:first Nd23fd089d3654fb6880025879a8d504f
59 rdf:rest N1bb5acaca193404eba55c6e879eca48b
60 N0cfa1d61019d4121b3d7d74d158dd037 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Software
62 rdf:type schema:DefinedTerm
63 N1bb5acaca193404eba55c6e879eca48b rdf:first Nb8b4c32e0dda4c6bab844e75ed6fa676
64 rdf:rest Na252b37aedd34e59a45b4cab71ae87ec
65 N20330e4999d843e38729f56803bfcd56 rdf:first Ne73749c190464df5b1fd6e0ca0595c71
66 rdf:rest Na853fe4d104641e595b9faa6610ff248
67 N2dbc0b82ea084b1c81d3fb63a858ec5c schema:affiliation https://www.grid.ac/institutes/grid.251916.8
68 schema:familyName Lee
69 schema:givenName Ji-Hye
70 rdf:type schema:Person
71 N69b94832171f4426af98f8736bd119f3 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N6cec4ef155eb46b38b14f993e2f62c42 schema:name nlm_unique_id
74 schema:value 100965194
75 rdf:type schema:PropertyValue
76 N7100abb9711240698f2afeb3e9332110 rdf:first N2dbc0b82ea084b1c81d3fb63a858ec5c
77 rdf:rest Na062812d47a647d58079ec208c2c3f65
78 N7cd72c7573c647b5a3c0efc3392cb1ab schema:volumeNumber 20
79 rdf:type schema:PublicationVolume
80 N869b4e23c41940d6871dc9352ae0f067 schema:name pubmed_id
81 schema:value 30786880
82 rdf:type schema:PropertyValue
83 N95486b1c55ae4c46b50dddd37dba05a9 schema:name readcube_id
84 schema:value fcd4cad85e779cc610657f76a5e8902cc2b6dfb106c4e4b86d47e70283695b95
85 rdf:type schema:PropertyValue
86 N9c6e636834de4fb1bbe1eb14b54673f5 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
87 schema:familyName Choi
88 schema:givenName Ji-Hye
89 rdf:type schema:Person
90 Na062812d47a647d58079ec208c2c3f65 rdf:first Na47d81554bcd499482510327b7ab3eb0
91 rdf:rest N066df188a9e84258aa3284692a6541c5
92 Na252b37aedd34e59a45b4cab71ae87ec rdf:first Nf1c902a59048426ca590a36363815bd8
93 rdf:rest rdf:nil
94 Na32e97736bd84e80873102337e92542a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Data Analysis
96 rdf:type schema:DefinedTerm
97 Na47d81554bcd499482510327b7ab3eb0 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
98 schema:familyName Park
99 schema:givenName So Eun
100 rdf:type schema:Person
101 Na853fe4d104641e595b9faa6610ff248 rdf:first N9c6e636834de4fb1bbe1eb14b54673f5
102 rdf:rest N7100abb9711240698f2afeb3e9332110
103 Nb8b4c32e0dda4c6bab844e75ed6fa676 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
104 schema:familyName Jung
105 schema:givenName Sae Hoon
106 rdf:type schema:Person
107 Nbe26c1a02d9d455f8c37f917926b61e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Workflow
109 rdf:type schema:DefinedTerm
110 Nd23fd089d3654fb6880025879a8d504f schema:affiliation https://www.grid.ac/institutes/grid.15444.30
111 schema:familyName Jeon
112 schema:givenName Youngsic
113 rdf:type schema:Person
114 Nd36462ca46e04e6585f7c6adf268065f schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Ne0b14c2a39c84424ba04698c52c8cd66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name High-Throughput Nucleotide Sequencing
118 rdf:type schema:DefinedTerm
119 Ne73749c190464df5b1fd6e0ca0595c71 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
120 schema:familyName Joo
121 schema:givenName Taewoon
122 rdf:type schema:Person
123 Nf1c902a59048426ca590a36363815bd8 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
124 schema:familyName Woo
125 schema:givenName Hyun Goo
126 rdf:type schema:Person
127 Nfc5293a78c3d4bb88fbf28e38b5ec5a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Reproducibility of Results
129 rdf:type schema:DefinedTerm
130 Nfc743d0d2a294a68a4a3faad22e06503 schema:name dimensions_id
131 schema:value pub.1112259588
132 rdf:type schema:PropertyValue
133 Nfed3f7e39d41402b8d99e7482ec27b39 schema:name doi
134 schema:value 10.1186/s12859-019-2676-x
135 rdf:type schema:PropertyValue
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
140 schema:name Genetics
141 rdf:type schema:DefinedTerm
142 sg:journal.1023786 schema:issn 1471-2105
143 schema:name BMC Bioinformatics
144 rdf:type schema:Periodical
145 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
146 https://doi.org/10.1038/nbt.1621
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
149 https://doi.org/10.1038/nmeth.1923
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nmeth.3252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050075164
152 https://doi.org/10.1038/nmeth.3252
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
155 https://doi.org/10.1186/gb-2013-14-4-r36
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/s12859-016-0902-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039809203
158 https://doi.org/10.1186/s12859-016-0902-3
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/s12859-016-1241-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042168201
161 https://doi.org/10.1186/s12859-016-1241-0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/s13059-016-0974-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005070991
164 https://doi.org/10.1186/s13059-016-0974-4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/s13059-016-1029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036669693
167 https://doi.org/10.1186/s13059-016-1029-6
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/annonc/mdu479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023590712
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/bioinformatics/btr665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000466381
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bioinformatics/btu638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053282140
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/btx540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091365178
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1101/gr.129684.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038753295
188 rdf:type schema:CreativeWork
189 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
190 rdf:type schema:CreativeWork
191 https://doi.org/10.5808/gi.2012.10.2.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038715140
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
194 schema:name BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
195 Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.251916.8 schema:alternateName Ajou University
198 schema:name Ajou University School of Medicine, Suwon, Republic of Korea
199 Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
200 Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 16499, Suwon, Republic of Korea
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...