Identifying cancer prognostic modules by module network analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xiong-Hui Zhou, Xin-Yi Chu, Gang Xue, Jiang-Hui Xiong, Hong-Yu Zhang

ABSTRACT

BACKGROUND: The identification of prognostic genes that can distinguish the prognostic risks of cancer patients remains a significant challenge. Previous works have proven that functional gene sets were more reliable for this task than the gene signature. However, few works have considered the cross-talk among functional gene sets, which may result in neglecting important prognostic gene sets for cancer. RESULTS: Here, we proposed a new method that considers both the interactions among modules and the prognostic correlation of the modules to identify prognostic modules in cancers. First, dense sub-networks in the gene co-expression network of cancer patients were detected. Second, cross-talk between every two modules was identified by a permutation test, thus generating the module network. Third, the prognostic correlation of each module was evaluated by the resampling method. Then, the GeneRank algorithm, which takes the module network and the prognostic correlations of all the modules as input, was applied to prioritize the prognostic modules. Finally, the selected modules were validated by survival analysis in various data sets. Our method was applied in three kinds of cancers, and the results show that our method succeeded in identifying prognostic modules in all the three cancers. In addition, our method outperformed state-of-the-art methods. Furthermore, the selected modules were significantly enriched with known cancer-related genes and drug targets of cancer, which may indicate that the genes involved in the modules may be drug targets for therapy. CONCLUSIONS: We proposed a useful method to identify key modules in cancer prognosis and our prognostic genes may be good candidates for drug targets. More... »

PAGES

85

References to SciGraph publications

  • 2013-12. Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk in NATURE CHEMICAL BIOLOGY
  • 2014-12. A computational model to predict bone metastasis in breast cancer by integrating the dysregulated pathways in BMC CANCER
  • 2012-04. Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse in BREAST CANCER RESEARCH AND TREATMENT
  • 2008-08. Gene expression–based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study in NATURE MEDICINE
  • 2010-12. A general co-expression network-based approach to gene expression analysis: comparison and applications in BMC SYSTEMS BIOLOGY
  • 2003-12. An automated method for finding molecular complexes in large protein interaction networks in BMC BIOINFORMATICS
  • 2002-01. Gene expression profiling predicts clinical outcome of breast cancer in NATURE
  • 2009-02. Dynamic modularity in protein interaction networks predicts breast cancer outcome in NATURE BIOTECHNOLOGY
  • 2010-07-13. Identification of high-quality cancer prognostic markers and metastasis network modules in NATURE COMMUNICATIONS
  • 2014-12. Prolyl-4-hydroxylase α subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition in BMC CANCER
  • 2004-12. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes in BMC BIOINFORMATICS
  • 2010-12. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa in BMC BIOLOGY
  • 2013-09. Ensemble classifier based on context specific miRNA regulation modules: a new method for cancer outcome prediction in BMC BIOINFORMATICS
  • 2015-12. Identification of a multi-cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm in SCIENTIFIC REPORTS
  • 2004-03. A census of human cancer genes in NATURE REVIEWS CANCER
  • 2010-12. Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context in BMC BIOINFORMATICS
  • 2005-12. GeneRank: Using search engine technology for the analysis of microarray experiments in BMC BIOINFORMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12859-019-2674-z

    DOI

    http://dx.doi.org/10.1186/s12859-019-2674-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112215894

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30777030


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Survival Analysis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Huazhong Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.35155.37", 
              "name": [
                "Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Xiong-Hui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Huazhong Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.35155.37", 
              "name": [
                "Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chu", 
            "givenName": "Xin-Yi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Huazhong Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.35155.37", 
              "name": [
                "Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xue", 
            "givenName": "Gang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "China Astronaut Research and Training Center", 
              "id": "https://www.grid.ac/institutes/grid.418516.f", 
              "name": [
                "State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, People\u2019s Republic of China", 
                "Lab of Epigenetics and Health Tracking Technology, Space Institute of Southern China, Shenzhen, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Jiang-Hui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Huazhong Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.35155.37", 
              "name": [
                "Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Hong-Yu", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1530/erc-11-0329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000737757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1741-7007-8-66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000808139", 
              "https://doi.org/10.1186/1741-7007-8-66"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0054945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000922079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-4-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004828956", 
              "https://doi.org/10.1186/1752-0509-4-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005097780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006689340", 
              "https://doi.org/10.1186/1471-2105-11-277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006689340", 
              "https://doi.org/10.1186/1471-2105-11-277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007067188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012829499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-4-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013256259", 
              "https://doi.org/10.1186/1471-2105-4-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-4-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013256259", 
              "https://doi.org/10.1186/1471-2105-4-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015650636", 
              "https://doi.org/10.1186/1471-2105-6-233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019670626", 
              "https://doi.org/10.1186/1471-2105-5-81"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022731034", 
              "https://doi.org/10.1038/nrc1299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022731034", 
              "https://doi.org/10.1038/nrc1299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evw113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023256716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-14-618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023842932", 
              "https://doi.org/10.1186/1471-2407-14-618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027534841", 
              "https://doi.org/10.1038/srep11966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djj052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030644591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0001047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032384928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032929097", 
              "https://doi.org/10.1038/nchembio.1366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-s12-s6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034745533", 
              "https://doi.org/10.1186/1471-2105-14-s12-s6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1602253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036168635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038660365", 
              "https://doi.org/10.1038/ncomms1033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038660365", 
              "https://doi.org/10.1038/ncomms1033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/eva.12417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038676854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040268839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.1790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040467803", 
              "https://doi.org/10.1038/nm.1790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415530a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043001094", 
              "https://doi.org/10.1038/415530a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415530a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043001094", 
              "https://doi.org/10.1038/415530a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043603670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0054848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045603033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046395788", 
              "https://doi.org/10.1038/nbt.1522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(05)17947-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047788005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-14-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047793023", 
              "https://doi.org/10.1186/1471-2407-14-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0092023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050857723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-011-1619-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051170071", 
              "https://doi.org/10.1007/s10549-011-1619-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.30204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052803794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.16433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084373544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1617743114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085217109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.17785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085394289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.18189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085599335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/genes8070182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090669375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1006026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101169841"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: The identification of prognostic genes that can distinguish the prognostic risks of cancer patients remains a significant challenge. Previous works have proven that functional gene sets were more reliable for this task than the gene signature. However, few works have considered the cross-talk among functional gene sets, which may result in neglecting important prognostic gene sets for cancer.\nRESULTS: Here, we proposed a new method that considers both the interactions among modules and the prognostic correlation of the modules to identify prognostic modules in cancers. First, dense sub-networks in the gene co-expression network of cancer patients were detected. Second, cross-talk between every two modules was identified by a permutation test, thus generating the module network. Third, the prognostic correlation of each module was evaluated by the resampling method. Then, the GeneRank algorithm, which takes the module network and the prognostic correlations of all the modules as input, was applied to prioritize the prognostic modules. Finally, the selected modules were validated by survival analysis in various data sets. Our method was applied in three kinds of cancers, and the results show that our method succeeded in identifying prognostic modules in all the three cancers. In addition, our method outperformed state-of-the-art methods. Furthermore, the selected modules were significantly enriched with known cancer-related genes and drug targets of cancer, which may indicate that the genes involved in the modules may be drug targets for therapy.\nCONCLUSIONS: We proposed a useful method to identify key modules in cancer prognosis and our prognostic genes may be good candidates for drug targets.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12859-019-2674-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Identifying cancer prognostic modules by module network analysis", 
        "pagination": "85", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "679dfa98e7c99bcaf48d0419da272bdf4682c877ac3f19ad19f5a38e0a4a150b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30777030"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12859-019-2674-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112215894"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12859-019-2674-z", 
          "https://app.dimensions.ai/details/publication/pub.1112215894"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45363_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12859-019-2674-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2674-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2674-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2674-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2674-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    261 TRIPLES      21 PREDICATES      76 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12859-019-2674-z schema:about N336e3c13f0ea475e9836716fed36a9dd
    2 N9c10ac8fe96f4c40a58d4b6a94a339d1
    3 Na08876e7d4cd46819372acf2a04ae787
    4 Nc621dbbad3ee47d19e0f7810c22c0446
    5 Nc9391edb1e0241c98efc20fc8d629099
    6 Ncb7da675d9b64be2b08bb6a512d7191e
    7 Ne8c3323abd1a44929c4b7f9ef9bc64d2
    8 Nefa86ffb4ced4f17929ba5bedbd1e149
    9 anzsrc-for:11
    10 anzsrc-for:1112
    11 schema:author Na5a97a7f405e41a58ead470fb0cee62e
    12 schema:citation sg:pub.10.1007/s10549-011-1619-7
    13 sg:pub.10.1038/415530a
    14 sg:pub.10.1038/nbt.1522
    15 sg:pub.10.1038/nchembio.1366
    16 sg:pub.10.1038/ncomms1033
    17 sg:pub.10.1038/nm.1790
    18 sg:pub.10.1038/nrc1299
    19 sg:pub.10.1038/srep11966
    20 sg:pub.10.1186/1471-2105-11-277
    21 sg:pub.10.1186/1471-2105-14-s12-s6
    22 sg:pub.10.1186/1471-2105-4-2
    23 sg:pub.10.1186/1471-2105-5-81
    24 sg:pub.10.1186/1471-2105-6-233
    25 sg:pub.10.1186/1471-2407-14-1
    26 sg:pub.10.1186/1471-2407-14-618
    27 sg:pub.10.1186/1741-7007-8-66
    28 sg:pub.10.1186/1752-0509-4-8
    29 https://doi.org/10.1002/ijc.30204
    30 https://doi.org/10.1016/s0140-6736(05)17947-1
    31 https://doi.org/10.1056/nejmoa1602253
    32 https://doi.org/10.1073/pnas.1617743114
    33 https://doi.org/10.1093/gbe/evw113
    34 https://doi.org/10.1093/jnci/djj052
    35 https://doi.org/10.1093/nar/gkm958
    36 https://doi.org/10.1093/nar/gkt1068
    37 https://doi.org/10.1093/nar/gkv1165
    38 https://doi.org/10.1093/nar/gkv1230
    39 https://doi.org/10.1111/eva.12417
    40 https://doi.org/10.1371/journal.pcbi.1002240
    41 https://doi.org/10.1371/journal.pcbi.1006026
    42 https://doi.org/10.1371/journal.pone.0001047
    43 https://doi.org/10.1371/journal.pone.0054848
    44 https://doi.org/10.1371/journal.pone.0054945
    45 https://doi.org/10.1371/journal.pone.0092023
    46 https://doi.org/10.1530/erc-11-0329
    47 https://doi.org/10.18632/oncotarget.16433
    48 https://doi.org/10.18632/oncotarget.17785
    49 https://doi.org/10.18632/oncotarget.18189
    50 https://doi.org/10.3390/genes8070182
    51 schema:datePublished 2019-12
    52 schema:datePublishedReg 2019-12-01
    53 schema:description BACKGROUND: The identification of prognostic genes that can distinguish the prognostic risks of cancer patients remains a significant challenge. Previous works have proven that functional gene sets were more reliable for this task than the gene signature. However, few works have considered the cross-talk among functional gene sets, which may result in neglecting important prognostic gene sets for cancer. RESULTS: Here, we proposed a new method that considers both the interactions among modules and the prognostic correlation of the modules to identify prognostic modules in cancers. First, dense sub-networks in the gene co-expression network of cancer patients were detected. Second, cross-talk between every two modules was identified by a permutation test, thus generating the module network. Third, the prognostic correlation of each module was evaluated by the resampling method. Then, the GeneRank algorithm, which takes the module network and the prognostic correlations of all the modules as input, was applied to prioritize the prognostic modules. Finally, the selected modules were validated by survival analysis in various data sets. Our method was applied in three kinds of cancers, and the results show that our method succeeded in identifying prognostic modules in all the three cancers. In addition, our method outperformed state-of-the-art methods. Furthermore, the selected modules were significantly enriched with known cancer-related genes and drug targets of cancer, which may indicate that the genes involved in the modules may be drug targets for therapy. CONCLUSIONS: We proposed a useful method to identify key modules in cancer prognosis and our prognostic genes may be good candidates for drug targets.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree true
    57 schema:isPartOf N2aa1f22af350451c8e52d429168a4e1f
    58 N9fb1624a6cd3444cb196bbe90b826ff8
    59 sg:journal.1023786
    60 schema:name Identifying cancer prognostic modules by module network analysis
    61 schema:pagination 85
    62 schema:productId N0f567c4260364b308a35726e9cd3e41d
    63 N1c9d3e9328954f2bb72cade106f1d57d
    64 Nabb8306f0394474699ddbb0c26ed6da3
    65 Ndfb760caa4c3412cbb11ba104005ab99
    66 Nf49d5c7af3ad4c938717f9261fb2dc94
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112215894
    68 https://doi.org/10.1186/s12859-019-2674-z
    69 schema:sdDatePublished 2019-04-11T11:12
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N49523fcb4f0d4e679ee4e494e1e085b6
    72 schema:url https://link.springer.com/10.1186%2Fs12859-019-2674-z
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N0f567c4260364b308a35726e9cd3e41d schema:name readcube_id
    77 schema:value 679dfa98e7c99bcaf48d0419da272bdf4682c877ac3f19ad19f5a38e0a4a150b
    78 rdf:type schema:PropertyValue
    79 N10615bd5772c491395476a1791a92536 rdf:first N421b8326c0ac476bb4aaf341f84a79fb
    80 rdf:rest N1144e1f7bf0943f58b54c7240b1ac64f
    81 N1144e1f7bf0943f58b54c7240b1ac64f rdf:first Nd0fce28fbd894bb485fc14b498a88d6c
    82 rdf:rest N9219224d0dfe43ccad0988efde1ac9e2
    83 N1c9d3e9328954f2bb72cade106f1d57d schema:name doi
    84 schema:value 10.1186/s12859-019-2674-z
    85 rdf:type schema:PropertyValue
    86 N2aa1f22af350451c8e52d429168a4e1f schema:volumeNumber 20
    87 rdf:type schema:PublicationVolume
    88 N336e3c13f0ea475e9836716fed36a9dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Prognosis
    90 rdf:type schema:DefinedTerm
    91 N421b8326c0ac476bb4aaf341f84a79fb schema:affiliation https://www.grid.ac/institutes/grid.35155.37
    92 schema:familyName Xue
    93 schema:givenName Gang
    94 rdf:type schema:Person
    95 N49523fcb4f0d4e679ee4e494e1e085b6 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 N77c76dd8ae424023bfa223a447b5fd16 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
    98 schema:familyName Chu
    99 schema:givenName Xin-Yi
    100 rdf:type schema:Person
    101 N7fff3cec1e154944a04cd5e736ead731 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
    102 schema:familyName Zhou
    103 schema:givenName Xiong-Hui
    104 rdf:type schema:Person
    105 N9219224d0dfe43ccad0988efde1ac9e2 rdf:first N994d6ff078d746d7a22eebaafa7b9ed2
    106 rdf:rest rdf:nil
    107 N994d6ff078d746d7a22eebaafa7b9ed2 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
    108 schema:familyName Zhang
    109 schema:givenName Hong-Yu
    110 rdf:type schema:Person
    111 N9c10ac8fe96f4c40a58d4b6a94a339d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Algorithms
    113 rdf:type schema:DefinedTerm
    114 N9fb1624a6cd3444cb196bbe90b826ff8 schema:issueNumber 1
    115 rdf:type schema:PublicationIssue
    116 Na08876e7d4cd46819372acf2a04ae787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Survival Analysis
    118 rdf:type schema:DefinedTerm
    119 Na5a97a7f405e41a58ead470fb0cee62e rdf:first N7fff3cec1e154944a04cd5e736ead731
    120 rdf:rest Nfdb7e8f659d740bf84e0af895f69c67c
    121 Nabb8306f0394474699ddbb0c26ed6da3 schema:name dimensions_id
    122 schema:value pub.1112215894
    123 rdf:type schema:PropertyValue
    124 Nc621dbbad3ee47d19e0f7810c22c0446 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Gene Regulatory Networks
    126 rdf:type schema:DefinedTerm
    127 Nc9391edb1e0241c98efc20fc8d629099 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Female
    129 rdf:type schema:DefinedTerm
    130 Ncb7da675d9b64be2b08bb6a512d7191e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Gene Expression Profiling
    132 rdf:type schema:DefinedTerm
    133 Nd0fce28fbd894bb485fc14b498a88d6c schema:affiliation https://www.grid.ac/institutes/grid.418516.f
    134 schema:familyName Xiong
    135 schema:givenName Jiang-Hui
    136 rdf:type schema:Person
    137 Ndfb760caa4c3412cbb11ba104005ab99 schema:name nlm_unique_id
    138 schema:value 100965194
    139 rdf:type schema:PropertyValue
    140 Ne8c3323abd1a44929c4b7f9ef9bc64d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Neoplasms
    142 rdf:type schema:DefinedTerm
    143 Nefa86ffb4ced4f17929ba5bedbd1e149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Humans
    145 rdf:type schema:DefinedTerm
    146 Nf49d5c7af3ad4c938717f9261fb2dc94 schema:name pubmed_id
    147 schema:value 30777030
    148 rdf:type schema:PropertyValue
    149 Nfdb7e8f659d740bf84e0af895f69c67c rdf:first N77c76dd8ae424023bfa223a447b5fd16
    150 rdf:rest N10615bd5772c491395476a1791a92536
    151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Medical and Health Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Oncology and Carcinogenesis
    156 rdf:type schema:DefinedTerm
    157 sg:journal.1023786 schema:issn 1471-2105
    158 schema:name BMC Bioinformatics
    159 rdf:type schema:Periodical
    160 sg:pub.10.1007/s10549-011-1619-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051170071
    161 https://doi.org/10.1007/s10549-011-1619-7
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
    164 https://doi.org/10.1038/415530a
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nbt.1522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046395788
    167 https://doi.org/10.1038/nbt.1522
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nchembio.1366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032929097
    170 https://doi.org/10.1038/nchembio.1366
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/ncomms1033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038660365
    173 https://doi.org/10.1038/ncomms1033
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nm.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040467803
    176 https://doi.org/10.1038/nm.1790
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nrc1299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022731034
    179 https://doi.org/10.1038/nrc1299
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/srep11966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027534841
    182 https://doi.org/10.1038/srep11966
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1186/1471-2105-11-277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006689340
    185 https://doi.org/10.1186/1471-2105-11-277
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1186/1471-2105-14-s12-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034745533
    188 https://doi.org/10.1186/1471-2105-14-s12-s6
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/1471-2105-4-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013256259
    191 https://doi.org/10.1186/1471-2105-4-2
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1186/1471-2105-5-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019670626
    194 https://doi.org/10.1186/1471-2105-5-81
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/1471-2105-6-233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015650636
    197 https://doi.org/10.1186/1471-2105-6-233
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/1471-2407-14-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047793023
    200 https://doi.org/10.1186/1471-2407-14-1
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1186/1471-2407-14-618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023842932
    203 https://doi.org/10.1186/1471-2407-14-618
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/1741-7007-8-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000808139
    206 https://doi.org/10.1186/1741-7007-8-66
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1752-0509-4-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004828956
    209 https://doi.org/10.1186/1752-0509-4-8
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1002/ijc.30204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052803794
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/s0140-6736(05)17947-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788005
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1056/nejmoa1602253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036168635
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1073/pnas.1617743114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085217109
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1093/gbe/evw113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023256716
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1093/jnci/djj052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030644591
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1093/nar/gkm958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043603670
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1093/nar/gkt1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040268839
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1093/nar/gkv1165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012829499
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/nar/gkv1230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005097780
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1111/eva.12417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038676854
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1371/journal.pcbi.1002240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007067188
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1371/journal.pcbi.1006026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101169841
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1371/journal.pone.0001047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032384928
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1371/journal.pone.0054848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045603033
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1371/journal.pone.0054945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000922079
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1371/journal.pone.0092023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050857723
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1530/erc-11-0329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000737757
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.18632/oncotarget.16433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084373544
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.18632/oncotarget.17785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085394289
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.18632/oncotarget.18189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085599335
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.3390/genes8070182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090669375
    254 rdf:type schema:CreativeWork
    255 https://www.grid.ac/institutes/grid.35155.37 schema:alternateName Huazhong Agricultural University
    256 schema:name Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People’s Republic of China
    257 rdf:type schema:Organization
    258 https://www.grid.ac/institutes/grid.418516.f schema:alternateName China Astronaut Research and Training Center
    259 schema:name Lab of Epigenetics and Health Tracking Technology, Space Institute of Southern China, Shenzhen, People’s Republic of China
    260 State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, People’s Republic of China
    261 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...