Predicting blood pressure from physiological index data using the SVR algorithm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Bing Zhang, Huihui Ren, Guoyan Huang, Yongqiang Cheng, Changzhen Hu

ABSTRACT

BACKGROUND: Blood pressure diseases have increasingly been identified as among the main factors threatening human health. How to accurately and conveniently measure blood pressure is the key to the implementation of effective prevention and control measures for blood pressure diseases. Traditional blood pressure measurement methods exhibit many inherent disadvantages, for example, the time needed for each measurement is difficult to determine, continuous measurement causes discomfort, and the measurement process is relatively cumbersome. Wearable devices that enable continuous measurement of blood pressure provide new opportunities and hopes. Although machine learning methods for blood pressure prediction have been studied, the accuracy of the results does not satisfy the needs of practical applications. RESULTS: This paper proposes an efficient blood pressure prediction method based on the support vector machine regression (SVR) algorithm to solve the key gap between the need for continuous measurement for prophylaxis and the lack of an effective method for continuous measurement. The results of the algorithm were compared with those obtained from two classical machine learning algorithms, i.e., linear regression (LinearR), back propagation neural network (BP), with respect to six evaluation indexes (accuracy, pass rate, mean absolute percentage error (MAPE), mean absolute error (MAE), R-squared coefficient of determination (R2) and Spearman's rank correlation coefficient). The experimental results showed that the SVR model can accurately and effectively predict blood pressure. CONCLUSION: The multi-feature joint training and predicting techniques in machine learning can potentially complement and greatly improve the accuracy of traditional blood pressure measurement, resulting in better disease classification and more accurate clinical judgements. More... »

PAGES

109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2667-y

DOI

http://dx.doi.org/10.1186/s12859-019-2667-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112464165

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30819090


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yanshan University", 
          "id": "https://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "School of Information Science and Engineering, Yanshan University, Hebei Avenue, 066004, Qinhuangdao, China", 
            "The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Hebei Avenue, 066004, Qinhuangdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Bing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yanshan University", 
          "id": "https://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "School of Information Science and Engineering, Yanshan University, Hebei Avenue, 066004, Qinhuangdao, China", 
            "The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Hebei Avenue, 066004, Qinhuangdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Huihui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yanshan University", 
          "id": "https://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "School of Information Science and Engineering, Yanshan University, Hebei Avenue, 066004, Qinhuangdao, China", 
            "The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Hebei Avenue, 066004, Qinhuangdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Guoyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hull", 
          "id": "https://www.grid.ac/institutes/grid.9481.4", 
          "name": [
            "Department of Computer Science and Technology, University of Hull, HU6 7RX, Hull, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Yongqiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.43555.32", 
          "name": [
            "Beijing Key Laboratory of Software Security Engineering Technique, Beijing Institute of Technology, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Changzhen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000991887", 
          "https://doi.org/10.1023/b:stco.0000035301.49549.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/s13428-012-0312-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003436048", 
          "https://doi.org/10.3758/s13428-012-0312-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/637635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010175960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11906-012-0306-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012339001", 
          "https://doi.org/10.1007/s11906-012-0306-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0087357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017889557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-199715010-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018720560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-199715010-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018720560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-10-24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021980229", 
          "https://doi.org/10.1186/1475-925x-10-24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/boe.7.003007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028647767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.psy.0000238453.11324.d5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.psy.0000238453.11324.d5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbio.201000050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041597741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40710-015-0105-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044270484", 
          "https://doi.org/10.1007/s40710-015-0105-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150923653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045411636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053194100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/696324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053350141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1098612x13495025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053723441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1098612x13495025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053723441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/78.3.691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2007.897805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2011.2163157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2013.2286998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2014.2318779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079013405", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2001.1019611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094819469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2787980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100299947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2018.2805223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101227531"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Blood pressure diseases have increasingly been identified as among the main factors threatening human health. How to accurately and conveniently measure blood pressure is the key to the implementation of effective prevention and control measures for blood pressure diseases. Traditional blood pressure measurement methods exhibit many inherent disadvantages, for example, the time needed for each measurement is difficult to determine, continuous measurement causes discomfort, and the measurement process is relatively cumbersome. Wearable devices that enable continuous measurement of blood pressure provide new opportunities and hopes. Although machine learning methods for blood pressure prediction have been studied, the accuracy of the results does not satisfy the needs of practical applications.\nRESULTS: This paper proposes an efficient blood pressure prediction method based on the support vector machine regression (SVR) algorithm to solve the key gap between the need for continuous measurement for prophylaxis and the lack of an effective method for continuous measurement. The results of the algorithm were compared with those obtained from two classical machine learning algorithms, i.e., linear regression (LinearR), back propagation neural network (BP), with respect to six evaluation indexes (accuracy, pass rate, mean absolute percentage error (MAPE), mean absolute error (MAE), R-squared coefficient of determination (R2) and Spearman's rank correlation coefficient). The experimental results showed that the SVR model can accurately and effectively predict blood pressure.\nCONCLUSION: The multi-feature joint training and predicting techniques in machine learning can potentially complement and greatly improve the accuracy of traditional blood pressure measurement, resulting in better disease classification and more accurate clinical judgements.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2667-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Predicting blood pressure from physiological index data using the SVR algorithm", 
    "pagination": "109", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2667-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce3dbec9789d680144f98b1545a69fbcd49cf9d75d259befed4a90c218311ff1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112464165"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30819090"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2667-y", 
      "https://app.dimensions.ai/details/publication/pub.1112464165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119752_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-019-2667-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2667-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2667-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2667-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2667-y'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      63 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2667-y schema:about N1f722d5b1b1f44bb8db665a381cac662
2 N267dbbab0a684c3eabcb117e4079323b
3 N4c8e1bdc6cd5416dad6e4e7afee0028b
4 N9952fbf9a05a4e96877ab1646eab680d
5 N9a9826e518f24d5a9a38966e2fbc575a
6 N9b543e6b3e4c44958038b6a2b0ab4970
7 Nc2987d3b8e8741d6b42aaa3a44f436ba
8 Nd2cd0b27cc2c4cdb876d400e5f5718a6
9 Ndee9457c3d5243cf8600c2556520a0f5
10 anzsrc-for:08
11 anzsrc-for:0801
12 schema:author Nfecb1616c2f9478089f4977fcecf3d91
13 schema:citation sg:pub.10.1007/s11906-012-0306-3
14 sg:pub.10.1007/s40710-015-0105-3
15 sg:pub.10.1023/b:stco.0000035301.49549.88
16 sg:pub.10.1186/1475-925x-10-24
17 sg:pub.10.3758/s13428-012-0312-z
18 https://app.dimensions.ai/details/publication/pub.1079013405
19 https://doi.org/10.1002/jbio.201000050
20 https://doi.org/10.1016/j.patcog.2005.10.006
21 https://doi.org/10.1093/biomet/78.3.691
22 https://doi.org/10.1097/00004872-199715010-00001
23 https://doi.org/10.1097/01.psy.0000238453.11324.d5
24 https://doi.org/10.1109/access.2017.2787980
25 https://doi.org/10.1109/access.2018.2805223
26 https://doi.org/10.1109/iembs.2001.1019611
27 https://doi.org/10.1109/tbme.2007.897805
28 https://doi.org/10.1109/tbme.2011.2163157
29 https://doi.org/10.1109/tbme.2013.2286998
30 https://doi.org/10.1109/tbme.2014.2318779
31 https://doi.org/10.1145/1961189.1961199
32 https://doi.org/10.1155/2012/696324
33 https://doi.org/10.1155/2014/637635
34 https://doi.org/10.1177/1098612x13495025
35 https://doi.org/10.1364/boe.7.003007
36 https://doi.org/10.1371/journal.pone.0087357
37 https://doi.org/10.3390/s150923653
38 schema:datePublished 2019-12
39 schema:datePublishedReg 2019-12-01
40 schema:description BACKGROUND: Blood pressure diseases have increasingly been identified as among the main factors threatening human health. How to accurately and conveniently measure blood pressure is the key to the implementation of effective prevention and control measures for blood pressure diseases. Traditional blood pressure measurement methods exhibit many inherent disadvantages, for example, the time needed for each measurement is difficult to determine, continuous measurement causes discomfort, and the measurement process is relatively cumbersome. Wearable devices that enable continuous measurement of blood pressure provide new opportunities and hopes. Although machine learning methods for blood pressure prediction have been studied, the accuracy of the results does not satisfy the needs of practical applications. RESULTS: This paper proposes an efficient blood pressure prediction method based on the support vector machine regression (SVR) algorithm to solve the key gap between the need for continuous measurement for prophylaxis and the lack of an effective method for continuous measurement. The results of the algorithm were compared with those obtained from two classical machine learning algorithms, i.e., linear regression (LinearR), back propagation neural network (BP), with respect to six evaluation indexes (accuracy, pass rate, mean absolute percentage error (MAPE), mean absolute error (MAE), R-squared coefficient of determination (R2) and Spearman's rank correlation coefficient). The experimental results showed that the SVR model can accurately and effectively predict blood pressure. CONCLUSION: The multi-feature joint training and predicting techniques in machine learning can potentially complement and greatly improve the accuracy of traditional blood pressure measurement, resulting in better disease classification and more accurate clinical judgements.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf Naa3b0a72c12346b893168efcd04fcd48
45 Ne5140db1f96046089d82b98cf249decc
46 sg:journal.1023786
47 schema:name Predicting blood pressure from physiological index data using the SVR algorithm
48 schema:pagination 109
49 schema:productId N0437c54c64544ecda7a25398e75c9d58
50 N669d1ab6a0764586bdcb4b3b50e0cd71
51 N86f061555a58450d9339af694a96a164
52 Ncfc6864e43974e2e8f63c91b6833b887
53 Ne9fde3b9fae5438a8c698b67a4eef425
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112464165
55 https://doi.org/10.1186/s12859-019-2667-y
56 schema:sdDatePublished 2019-04-15T08:54
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ncac309120b4446c4ad3472a3715aaae2
59 schema:url https://link.springer.com/10.1186%2Fs12859-019-2667-y
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0437c54c64544ecda7a25398e75c9d58 schema:name dimensions_id
64 schema:value pub.1112464165
65 rdf:type schema:PropertyValue
66 N1f722d5b1b1f44bb8db665a381cac662 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Linear Models
68 rdf:type schema:DefinedTerm
69 N267dbbab0a684c3eabcb117e4079323b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Blood Pressure
71 rdf:type schema:DefinedTerm
72 N2cbf212f1bc84cc3be675b635acf8835 schema:affiliation https://www.grid.ac/institutes/grid.413012.5
73 schema:familyName Zhang
74 schema:givenName Bing
75 rdf:type schema:Person
76 N3cabd15c02e84189874ccb3a837794e1 rdf:first N42135ceb8089442485d88360722a3f6a
77 rdf:rest Nf5b137e4717d418b946832bb39d62bb9
78 N42135ceb8089442485d88360722a3f6a schema:affiliation https://www.grid.ac/institutes/grid.413012.5
79 schema:familyName Ren
80 schema:givenName Huihui
81 rdf:type schema:Person
82 N4c8e1bdc6cd5416dad6e4e7afee0028b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Humans
84 rdf:type schema:DefinedTerm
85 N5f9bb3ea5935479ab53ca0f102b97a1f rdf:first N7b7d2ef6d93e4f4e98a75c1d90587536
86 rdf:rest Nfa89ff0db4c9416d97d977ccc001eb68
87 N619d57cdefe04fd7b9605ca23affb74a schema:affiliation https://www.grid.ac/institutes/grid.43555.32
88 schema:familyName Hu
89 schema:givenName Changzhen
90 rdf:type schema:Person
91 N669d1ab6a0764586bdcb4b3b50e0cd71 schema:name readcube_id
92 schema:value ce3dbec9789d680144f98b1545a69fbcd49cf9d75d259befed4a90c218311ff1
93 rdf:type schema:PropertyValue
94 N6a971a4cc54642b4b724f015cd980fb4 schema:affiliation https://www.grid.ac/institutes/grid.413012.5
95 schema:familyName Huang
96 schema:givenName Guoyan
97 rdf:type schema:Person
98 N7b7d2ef6d93e4f4e98a75c1d90587536 schema:affiliation https://www.grid.ac/institutes/grid.9481.4
99 schema:familyName Cheng
100 schema:givenName Yongqiang
101 rdf:type schema:Person
102 N86f061555a58450d9339af694a96a164 schema:name pubmed_id
103 schema:value 30819090
104 rdf:type schema:PropertyValue
105 N9952fbf9a05a4e96877ab1646eab680d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Male
107 rdf:type schema:DefinedTerm
108 N9a9826e518f24d5a9a38966e2fbc575a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Adult
110 rdf:type schema:DefinedTerm
111 N9b543e6b3e4c44958038b6a2b0ab4970 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Support Vector Machine
113 rdf:type schema:DefinedTerm
114 Naa3b0a72c12346b893168efcd04fcd48 schema:volumeNumber 20
115 rdf:type schema:PublicationVolume
116 Nc2987d3b8e8741d6b42aaa3a44f436ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Machine Learning
118 rdf:type schema:DefinedTerm
119 Ncac309120b4446c4ad3472a3715aaae2 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Ncfc6864e43974e2e8f63c91b6833b887 schema:name nlm_unique_id
122 schema:value 100965194
123 rdf:type schema:PropertyValue
124 Nd2cd0b27cc2c4cdb876d400e5f5718a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Female
126 rdf:type schema:DefinedTerm
127 Ndee9457c3d5243cf8600c2556520a0f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Neural Networks (Computer)
129 rdf:type schema:DefinedTerm
130 Ne5140db1f96046089d82b98cf249decc schema:issueNumber 1
131 rdf:type schema:PublicationIssue
132 Ne9fde3b9fae5438a8c698b67a4eef425 schema:name doi
133 schema:value 10.1186/s12859-019-2667-y
134 rdf:type schema:PropertyValue
135 Nf5b137e4717d418b946832bb39d62bb9 rdf:first N6a971a4cc54642b4b724f015cd980fb4
136 rdf:rest N5f9bb3ea5935479ab53ca0f102b97a1f
137 Nfa89ff0db4c9416d97d977ccc001eb68 rdf:first N619d57cdefe04fd7b9605ca23affb74a
138 rdf:rest rdf:nil
139 Nfecb1616c2f9478089f4977fcecf3d91 rdf:first N2cbf212f1bc84cc3be675b635acf8835
140 rdf:rest N3cabd15c02e84189874ccb3a837794e1
141 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
142 schema:name Information and Computing Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
145 schema:name Artificial Intelligence and Image Processing
146 rdf:type schema:DefinedTerm
147 sg:journal.1023786 schema:issn 1471-2105
148 schema:name BMC Bioinformatics
149 rdf:type schema:Periodical
150 sg:pub.10.1007/s11906-012-0306-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012339001
151 https://doi.org/10.1007/s11906-012-0306-3
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s40710-015-0105-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044270484
154 https://doi.org/10.1007/s40710-015-0105-3
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
157 https://doi.org/10.1023/b:stco.0000035301.49549.88
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1475-925x-10-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021980229
160 https://doi.org/10.1186/1475-925x-10-24
161 rdf:type schema:CreativeWork
162 sg:pub.10.3758/s13428-012-0312-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003436048
163 https://doi.org/10.3758/s13428-012-0312-z
164 rdf:type schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1079013405 schema:CreativeWork
166 https://doi.org/10.1002/jbio.201000050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041597741
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.patcog.2005.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053194100
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/biomet/78.3.691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420201
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1097/00004872-199715010-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018720560
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1097/01.psy.0000238453.11324.d5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039188536
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/access.2017.2787980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100299947
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/access.2018.2805223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101227531
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/iembs.2001.1019611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094819469
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tbme.2007.897805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527072
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tbme.2011.2163157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528516
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tbme.2013.2286998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529411
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tbme.2014.2318779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529569
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1155/2012/696324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053350141
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1155/2014/637635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010175960
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1177/1098612x13495025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053723441
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1364/boe.7.003007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028647767
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0087357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017889557
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3390/s150923653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045411636
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.413012.5 schema:alternateName Yanshan University
205 schema:name School of Information Science and Engineering, Yanshan University, Hebei Avenue, 066004, Qinhuangdao, China
206 The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Hebei Avenue, 066004, Qinhuangdao, China
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.43555.32 schema:alternateName Beijing Institute of Technology
209 schema:name Beijing Key Laboratory of Software Security Engineering Technique, Beijing Institute of Technology, 100081, Beijing, China
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.9481.4 schema:alternateName University of Hull
212 schema:name Department of Computer Science and Technology, University of Hull, HU6 7RX, Hull, UK
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...