SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yoann Dufresne, Franck Lejzerowicz, Laure Apotheloz Perret-Gentil, Jan Pawlowski, Tristan Cordier

ABSTRACT

BACKGROUND: High-throughput amplicon sequencing of environmental DNA (eDNA metabarcoding) has become a routine tool for biodiversity survey and ecological studies. By including sample-specific tags in the primers prior PCR amplification, it is possible to multiplex hundreds of samples in a single sequencing run. The analysis of millions of sequences spread into hundreds to thousands of samples prompts for efficient, automated yet flexible analysis pipelines. Various algorithms and software have been developed to perform one or multiple processing steps, such as paired-end reads assembly, chimera filtering, Operational Taxonomic Unit (OTU) clustering and taxonomic assignment. Some of these software are now well established and widely used by scientists as part of their workflow. Wrappers that are capable to process metabarcoding data from raw sequencing data to annotated OTU-to-sample matrix were also developed to facilitate the analysis for non-specialist users. Yet, most of them require basic bioinformatic or command-line knowledge, which can limit the accessibility to such integrative toolkits. Furthermore, for flexibility reasons, these tools have adopted a step-by-step approach, which can prevent an easy automation of the workflow, and hence hamper the analysis reproducibility. RESULTS: We introduce SLIM, an open-source web application that simplifies the creation and execution of metabarcoding data processing pipelines through an intuitive Graphic User Interface (GUI). The GUI interact with well-established software and their associated parameters, so that the processing steps are performed seamlessly from the raw sequencing data to an annotated OTU-to-sample matrix. Thanks to a module-centered organization, SLIM can be used for a wide range of metabarcoding cases, and can also be extended by developers for custom needs or for the integration of new software. The pipeline configuration (i.e. the modules chaining and all their parameters) is stored in a file that can be used for reproducing the same analysis. CONCLUSION: This web application has been designed to be user-friendly for non-specialists yet flexible with advanced settings and extensibility for advanced users and bioinformaticians. The source code along with full documentation is available on the GitHub repository ( https://github.com/yoann-dufresne/SLIM ) and a demonstration server is accessible through the application website ( https://trtcrd.github.io/SLIM/ ). More... »

PAGES

88

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2663-2

DOI

http://dx.doi.org/10.1186/s12859-019-2663-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112225494

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30782112


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Barcoding, Taxonomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Pasteur", 
          "id": "https://www.grid.ac/institutes/grid.428999.7", 
          "name": [
            "Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d\u2019Yvoy, 1205, Geneva, Switzerland", 
            "Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufresne", 
        "givenName": "Yoann", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d\u2019Yvoy, 1205, Geneva, Switzerland", 
            "Department of Computer Science and Engineering, University of California San Diego, San Diego, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lejzerowicz", 
        "givenName": "Franck", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d\u2019Yvoy, 1205, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perret-Gentil", 
        "givenName": "Laure Apotheloz", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d\u2019Yvoy, 1205, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pawlowski", 
        "givenName": "Jan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d\u2019Yvoy, 1205, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cordier", 
        "givenName": "Tristan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.7717/peerj.1692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000793166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margeo.2016.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003007468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margeo.2016.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003007468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margeo.2016.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003007468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margeo.2016.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003007468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.2584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003100614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005541374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.12758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009376532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013162719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013175803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016631324", 
          "https://doi.org/10.1038/nmeth.3869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017730157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jas.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020485128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jas.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020485128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jas.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020485128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jas.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020485128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1462-2920.12610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023169566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023433900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2012.05470.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025825451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025851006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025904619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025957402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026502845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.1487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028863405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-015-0081-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029757572", 
          "https://doi.org/10.1186/s40168-015-0081-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-015-0081-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029757572", 
          "https://doi.org/10.1186/s40168-015-0081-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-8286.2007.01678.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031314971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-s9-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031510787", 
          "https://doi.org/10.1186/1471-2105-15-s9-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0049334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033123125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.03160.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036037474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.03160.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036037474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.1420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036346444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01541-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038354310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.13761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038837371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2011.05403.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044566705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00062-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045980007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.13428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046457524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047017534", 
          "https://doi.org/10.1186/1471-2105-13-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2017.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131004", 
          "https://doi.org/10.1038/sdata.2017.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084209165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/099481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085113144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/099481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085113144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/099481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085113144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01312-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092381518", 
          "https://doi.org/10.1038/s41467-017-01312-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-018-0470-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104049103", 
          "https://doi.org/10.1186/s40168-018-0470-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3897/mbmg.2.25649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105330548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105639167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-018-0521-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106087053", 
          "https://doi.org/10.1186/s40168-018-0521-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: High-throughput amplicon sequencing of environmental DNA (eDNA metabarcoding) has become a routine tool for biodiversity survey and ecological studies. By including sample-specific tags in the primers prior PCR amplification, it is possible to multiplex hundreds of samples in a single sequencing run. The analysis of millions of sequences spread into hundreds to thousands of samples prompts for efficient, automated yet flexible analysis pipelines. Various algorithms and software have been developed to perform one or multiple processing steps, such as paired-end reads assembly, chimera filtering, Operational Taxonomic Unit (OTU) clustering and taxonomic assignment. Some of these software are now well established and widely used by scientists as part of their workflow. Wrappers that are capable to process metabarcoding data from raw sequencing data to annotated OTU-to-sample matrix were also developed to facilitate the analysis for non-specialist users. Yet, most of them require basic bioinformatic or command-line knowledge, which can limit the accessibility to such integrative toolkits. Furthermore, for flexibility reasons, these tools have adopted a step-by-step approach, which can prevent an easy automation of the workflow, and hence hamper the analysis reproducibility.\nRESULTS: We introduce SLIM, an open-source web application that simplifies the creation and execution of metabarcoding data processing pipelines through an intuitive Graphic User Interface (GUI). The GUI interact with well-established software and their associated parameters, so that the processing steps are performed seamlessly from the raw sequencing data to an annotated OTU-to-sample matrix. Thanks to a module-centered organization, SLIM can be used for a wide range of metabarcoding cases, and can also be extended by developers for custom needs or for the integration of new software. The pipeline configuration (i.e. the modules chaining and all their parameters) is stored in a file that can be used for reproducing the same analysis.\nCONCLUSION: This web application has been designed to be user-friendly for non-specialists yet flexible with advanced settings and extensibility for advanced users and bioinformaticians. The source code along with full documentation is available on the GitHub repository ( https://github.com/yoann-dufresne/SLIM ) and a demonstration server is accessible through the application website ( https://trtcrd.github.io/SLIM/ ).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2663-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data", 
    "pagination": "88", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6c10715a339b381593b04e2c84e5eeaf31f00d4cac259db08c21e315c74d510a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30782112"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2663-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112225494"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2663-2", 
      "https://app.dimensions.ai/details/publication/pub.1112225494"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54011_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-019-2663-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2663-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2663-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2663-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2663-2'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      74 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2663-2 schema:about N805084ae96b7438ab00582c3800e7f96
2 N85a280b405b243218956445202788ed2
3 Nb80473dd865b4f0cbc76e4dd23e435f4
4 Nc01672a0e9984f64825053a08d84dda0
5 Nca094a8e71744d9e84b2f6937602eaca
6 Ndfb74c6ee311457bbdd8aa9c2fc89de7
7 anzsrc-for:08
8 anzsrc-for:0806
9 schema:author Nb6df441b545b4903ab9a4ecfc3a45b62
10 schema:citation sg:pub.10.1038/nmeth.3869
11 sg:pub.10.1038/nmeth.f.303
12 sg:pub.10.1038/s41467-017-01312-x
13 sg:pub.10.1038/sdata.2017.27
14 sg:pub.10.1186/1471-2105-13-31
15 sg:pub.10.1186/1471-2105-15-s9-s10
16 sg:pub.10.1186/s40168-015-0081-x
17 sg:pub.10.1186/s40168-018-0470-z
18 sg:pub.10.1186/s40168-018-0521-5
19 https://doi.org/10.1016/j.jas.2016.10.001
20 https://doi.org/10.1016/j.margeo.2016.08.006
21 https://doi.org/10.1093/bioinformatics/btq461
22 https://doi.org/10.1093/bioinformatics/btr381
23 https://doi.org/10.1093/bioinformatics/bts611
24 https://doi.org/10.1093/nar/gks1160
25 https://doi.org/10.1093/nar/gks1219
26 https://doi.org/10.1093/nar/gkv107
27 https://doi.org/10.1093/nar/gkw343
28 https://doi.org/10.1101/099481
29 https://doi.org/10.1111/1462-2920.12610
30 https://doi.org/10.1111/1755-0998.12428
31 https://doi.org/10.1111/1755-0998.12668
32 https://doi.org/10.1111/1755-0998.12926
33 https://doi.org/10.1111/j.1365-294x.2011.05403.x
34 https://doi.org/10.1111/j.1365-294x.2012.05470.x
35 https://doi.org/10.1111/j.1469-8137.2009.03160.x
36 https://doi.org/10.1111/j.1471-8286.2007.01678.x
37 https://doi.org/10.1111/mec.13428
38 https://doi.org/10.1111/mec.13761
39 https://doi.org/10.1111/nph.12758
40 https://doi.org/10.1128/aem.00062-07
41 https://doi.org/10.1128/aem.01541-09
42 https://doi.org/10.1371/journal.pone.0000197
43 https://doi.org/10.1371/journal.pone.0049334
44 https://doi.org/10.3897/mbmg.2.25649
45 https://doi.org/10.7717/peerj.1420
46 https://doi.org/10.7717/peerj.1487
47 https://doi.org/10.7717/peerj.1692
48 https://doi.org/10.7717/peerj.2584
49 schema:datePublished 2019-12
50 schema:datePublishedReg 2019-12-01
51 schema:description BACKGROUND: High-throughput amplicon sequencing of environmental DNA (eDNA metabarcoding) has become a routine tool for biodiversity survey and ecological studies. By including sample-specific tags in the primers prior PCR amplification, it is possible to multiplex hundreds of samples in a single sequencing run. The analysis of millions of sequences spread into hundreds to thousands of samples prompts for efficient, automated yet flexible analysis pipelines. Various algorithms and software have been developed to perform one or multiple processing steps, such as paired-end reads assembly, chimera filtering, Operational Taxonomic Unit (OTU) clustering and taxonomic assignment. Some of these software are now well established and widely used by scientists as part of their workflow. Wrappers that are capable to process metabarcoding data from raw sequencing data to annotated OTU-to-sample matrix were also developed to facilitate the analysis for non-specialist users. Yet, most of them require basic bioinformatic or command-line knowledge, which can limit the accessibility to such integrative toolkits. Furthermore, for flexibility reasons, these tools have adopted a step-by-step approach, which can prevent an easy automation of the workflow, and hence hamper the analysis reproducibility. RESULTS: We introduce SLIM, an open-source web application that simplifies the creation and execution of metabarcoding data processing pipelines through an intuitive Graphic User Interface (GUI). The GUI interact with well-established software and their associated parameters, so that the processing steps are performed seamlessly from the raw sequencing data to an annotated OTU-to-sample matrix. Thanks to a module-centered organization, SLIM can be used for a wide range of metabarcoding cases, and can also be extended by developers for custom needs or for the integration of new software. The pipeline configuration (i.e. the modules chaining and all their parameters) is stored in a file that can be used for reproducing the same analysis. CONCLUSION: This web application has been designed to be user-friendly for non-specialists yet flexible with advanced settings and extensibility for advanced users and bioinformaticians. The source code along with full documentation is available on the GitHub repository ( https://github.com/yoann-dufresne/SLIM ) and a demonstration server is accessible through the application website ( https://trtcrd.github.io/SLIM/ ).
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N9808f1cd20f34ddd8c140c4efc24794e
56 Ne58ed1dcc025486590d26eb901822c93
57 sg:journal.1023786
58 schema:name SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data
59 schema:pagination 88
60 schema:productId N3f6e1c7c0d174ebcaa446772e0d1194e
61 N5c88bb9a2a4046d2952b8c31b0bac40d
62 Ncf96fb59d6f74ead9755e230bdcad68a
63 Nf7b9dfc40fcd4c908810b3696741405a
64 Nfb4ea83e278c4cd4b1229081d222daae
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112225494
66 https://doi.org/10.1186/s12859-019-2663-2
67 schema:sdDatePublished 2019-04-11T12:15
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N6986601de9fd4a0785df47451fb93dc1
70 schema:url https://link.springer.com/10.1186%2Fs12859-019-2663-2
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N3f6e1c7c0d174ebcaa446772e0d1194e schema:name nlm_unique_id
75 schema:value 100965194
76 rdf:type schema:PropertyValue
77 N484571963bb945c3b2426590a40079ad rdf:first N69c43676bd06493ebbaf30f28afa1bb0
78 rdf:rest Nf8935b279727475ba7ebd5d7b3c42772
79 N5b723b6bb7024d87834f12b0904c77dc schema:affiliation https://www.grid.ac/institutes/grid.8591.5
80 schema:familyName Cordier
81 schema:givenName Tristan
82 rdf:type schema:Person
83 N5c88bb9a2a4046d2952b8c31b0bac40d schema:name dimensions_id
84 schema:value pub.1112225494
85 rdf:type schema:PropertyValue
86 N6986601de9fd4a0785df47451fb93dc1 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N69c43676bd06493ebbaf30f28afa1bb0 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
89 schema:familyName Perret-Gentil
90 schema:givenName Laure Apotheloz
91 rdf:type schema:Person
92 N6fa0a49229f2437aa85cc21154d4cbc6 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
93 schema:familyName Lejzerowicz
94 schema:givenName Franck
95 rdf:type schema:Person
96 N789b6955dc8847dd8c69610f187d3c01 rdf:first N5b723b6bb7024d87834f12b0904c77dc
97 rdf:rest rdf:nil
98 N805084ae96b7438ab00582c3800e7f96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Reproducibility of Results
100 rdf:type schema:DefinedTerm
101 N85a280b405b243218956445202788ed2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Internet
103 rdf:type schema:DefinedTerm
104 N9808f1cd20f34ddd8c140c4efc24794e schema:volumeNumber 20
105 rdf:type schema:PublicationVolume
106 N9e1880fa82c24bbf8c4c94e5505cb3ba rdf:first N6fa0a49229f2437aa85cc21154d4cbc6
107 rdf:rest N484571963bb945c3b2426590a40079ad
108 Nb6df441b545b4903ab9a4ecfc3a45b62 rdf:first Nbfd6454607994e4aade23c0987372d0b
109 rdf:rest N9e1880fa82c24bbf8c4c94e5505cb3ba
110 Nb80473dd865b4f0cbc76e4dd23e435f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name User-Computer Interface
112 rdf:type schema:DefinedTerm
113 Nbfd6454607994e4aade23c0987372d0b schema:affiliation https://www.grid.ac/institutes/grid.428999.7
114 schema:familyName Dufresne
115 schema:givenName Yoann
116 rdf:type schema:Person
117 Nc01672a0e9984f64825053a08d84dda0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Software
119 rdf:type schema:DefinedTerm
120 Nca094a8e71744d9e84b2f6937602eaca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name DNA Barcoding, Taxonomic
122 rdf:type schema:DefinedTerm
123 Ncf96fb59d6f74ead9755e230bdcad68a schema:name doi
124 schema:value 10.1186/s12859-019-2663-2
125 rdf:type schema:PropertyValue
126 Nd108096747254e0ca10cc334ad26e75e schema:affiliation https://www.grid.ac/institutes/grid.8591.5
127 schema:familyName Pawlowski
128 schema:givenName Jan
129 rdf:type schema:Person
130 Ndfb74c6ee311457bbdd8aa9c2fc89de7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Algorithms
132 rdf:type schema:DefinedTerm
133 Ne58ed1dcc025486590d26eb901822c93 schema:issueNumber 1
134 rdf:type schema:PublicationIssue
135 Nf7b9dfc40fcd4c908810b3696741405a schema:name pubmed_id
136 schema:value 30782112
137 rdf:type schema:PropertyValue
138 Nf8935b279727475ba7ebd5d7b3c42772 rdf:first Nd108096747254e0ca10cc334ad26e75e
139 rdf:rest N789b6955dc8847dd8c69610f187d3c01
140 Nfb4ea83e278c4cd4b1229081d222daae schema:name readcube_id
141 schema:value 6c10715a339b381593b04e2c84e5eeaf31f00d4cac259db08c21e315c74d510a
142 rdf:type schema:PropertyValue
143 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
144 schema:name Information and Computing Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
147 schema:name Information Systems
148 rdf:type schema:DefinedTerm
149 sg:journal.1023786 schema:issn 1471-2105
150 schema:name BMC Bioinformatics
151 rdf:type schema:Periodical
152 sg:pub.10.1038/nmeth.3869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016631324
153 https://doi.org/10.1038/nmeth.3869
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
156 https://doi.org/10.1038/nmeth.f.303
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/s41467-017-01312-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092381518
159 https://doi.org/10.1038/s41467-017-01312-x
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/sdata.2017.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131004
162 https://doi.org/10.1038/sdata.2017.27
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/1471-2105-13-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047017534
165 https://doi.org/10.1186/1471-2105-13-31
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/1471-2105-15-s9-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031510787
168 https://doi.org/10.1186/1471-2105-15-s9-s10
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/s40168-015-0081-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029757572
171 https://doi.org/10.1186/s40168-015-0081-x
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/s40168-018-0470-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104049103
174 https://doi.org/10.1186/s40168-018-0470-z
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/s40168-018-0521-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106087053
177 https://doi.org/10.1186/s40168-018-0521-5
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jas.2016.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020485128
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.margeo.2016.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003007468
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btq461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904619
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/btr381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013175803
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/bts611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005541374
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/nar/gks1160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025957402
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/nar/gks1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017730157
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/nar/gkv107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013162719
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/nar/gkw343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026502845
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1101/099481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085113144
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/1462-2920.12610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023169566
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/1755-0998.12428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025851006
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/1755-0998.12668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084209165
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/1755-0998.12926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105639167
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1365-294x.2011.05403.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044566705
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1365-294x.2012.05470.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025825451
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/j.1469-8137.2009.03160.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036037474
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/j.1471-8286.2007.01678.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031314971
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/mec.13428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046457524
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/mec.13761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038837371
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/nph.12758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009376532
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1128/aem.00062-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045980007
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1128/aem.01541-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038354310
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1371/journal.pone.0000197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023433900
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pone.0049334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033123125
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3897/mbmg.2.25649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105330548
230 rdf:type schema:CreativeWork
231 https://doi.org/10.7717/peerj.1420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036346444
232 rdf:type schema:CreativeWork
233 https://doi.org/10.7717/peerj.1487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028863405
234 rdf:type schema:CreativeWork
235 https://doi.org/10.7717/peerj.1692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000793166
236 rdf:type schema:CreativeWork
237 https://doi.org/10.7717/peerj.2584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003100614
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
240 schema:name Department of Computer Science and Engineering, University of California San Diego, San Diego, California, USA
241 Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d’Yvoy, 1205, Geneva, Switzerland
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.428999.7 schema:alternateName Institut Pasteur
244 schema:name Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d’Yvoy, 1205, Geneva, Switzerland
245 Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, Paris, France
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.8591.5 schema:alternateName University of Geneva
248 schema:name Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d’Yvoy, 1205, Geneva, Switzerland
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...