CeModule: an integrative framework for discovering regulatory patterns from genomic data in cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Qiu Xiao, Jiawei Luo, Cheng Liang, Jie Cai, Guanghui Li, Buwen Cao

ABSTRACT

BACKGROUND: Non-coding RNAs (ncRNAs) are emerging as key regulators and play critical roles in a wide range of tumorigenesis. Recent studies have suggested that long non-coding RNAs (lncRNAs) could interact with microRNAs (miRNAs) and indirectly regulate miRNA targets through competing interactions. Therefore, uncovering the competing endogenous RNA (ceRNA) regulatory mechanism of lncRNAs, miRNAs and mRNAs in post-transcriptional level will aid in deciphering the underlying pathogenesis of human polygenic diseases and may unveil new diagnostic and therapeutic opportunities. However, the functional roles of vast majority of cancer specific ncRNAs and their combinational regulation patterns are still insufficiently understood. RESULTS: Here we develop an integrative framework called CeModule to discover lncRNA, miRNA and mRNA-associated regulatory modules. We fully utilize the matched expression profiles of lncRNAs, miRNAs and mRNAs and establish a model based on joint orthogonality non-negative matrix factorization for identifying modules. Meanwhile, we impose the experimentally verified miRNA-lncRNA interactions, the validated miRNA-mRNA interactions and the weighted gene-gene network into this framework to improve the module accuracy through the network-based penalties. The sparse regularizations are also used to help this model obtain modular sparse solutions. Finally, an iterative multiplicative updating algorithm is adopted to solve the optimization problem. CONCLUSIONS: We applied CeModule to two cancer datasets including ovarian cancer (OV) and uterine corpus endometrial carcinoma (UCEC) obtained from TCGA. The modular analysis indicated that the identified modules involving lncRNAs, miRNAs and mRNAs are significantly associated and functionally enriched in cancer-related biological processes and pathways, which may provide new insights into the complex regulatory mechanism of human diseases at the system level. More... »

PAGES

67

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2654-3

DOI

http://dx.doi.org/10.1186/s12859-019-2654-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111989356

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30732558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Ontology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Long Noncoding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411427.5", 
          "name": [
            "College of Computer Science and Electronic Engineering, Hunan University, 410082, Changsha, China", 
            "Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, 410081, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Qiu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Computer Science and Electronic Engineering, Hunan University, 410082, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Jiawei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Normal University", 
          "id": "https://www.grid.ac/institutes/grid.410585.d", 
          "name": [
            "College of Information Science and Engineering, Shandong Normal University, 250000, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Cheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Computer Science and Electronic Engineering, Hunan University, 410082, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Jie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Computer Science and Electronic Engineering, Hunan University, 410082, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Guanghui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Computer Science and Electronic Engineering, Hunan University, 410082, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Buwen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng2079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000182181", 
          "https://doi.org/10.1038/ng2079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000810319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001946316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13277-013-1142-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003630716", 
          "https://doi.org/10.1007/s13277-013-1142-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.11.4961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003932293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008917836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008960880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013310277", 
          "https://doi.org/10.1038/srep06088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013310277", 
          "https://doi.org/10.1038/srep06088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2015.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014266202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015271190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016904256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-12-2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018074315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1113329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684123", 
          "https://doi.org/10.1186/1471-2105-11-419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684123", 
          "https://doi.org/10.1186/1471-2105-11-419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024809910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.11.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025155909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025529308", 
          "https://doi.org/10.1038/nature12986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0080306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026009839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028333288", 
          "https://doi.org/10.1038/nmeth1079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031236821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033591666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036462093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036597085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.7312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037311149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.118992.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037330541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-013-0637-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037409488", 
          "https://doi.org/10.1007/s10107-013-0637-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039570773", 
          "https://doi.org/10.1038/nature07385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039788304", 
          "https://doi.org/10.1186/1471-2105-14-107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039788304", 
          "https://doi.org/10.1186/1471-2105-14-107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041587303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2mb25386k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042641068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0018872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043188660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043223154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv1094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043614046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043655731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044235097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045688640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/780521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048058787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2017.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050008108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050391113", 
          "https://doi.org/10.1038/nature09144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050391113", 
          "https://doi.org/10.1038/nature09144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050781918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051113890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2013.07.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051296744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051949960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052721759", 
          "https://doi.org/10.1038/44565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052721759", 
          "https://doi.org/10.1038/44565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053021425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053233704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbv033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2015.2462370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2012.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2016.2556744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061714221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1121566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0169232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067097051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2672600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1557-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084249933", 
          "https://doi.org/10.1186/s12859-017-1557-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1557-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084249933", 
          "https://doi.org/10.1186/s12859-017-1557-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btx545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091466609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2014.6889377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093232438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2018.2864129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106063490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2019.2891779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111328503"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Non-coding RNAs (ncRNAs) are emerging as key regulators and play critical roles in a wide range of tumorigenesis. Recent studies have suggested that long non-coding RNAs (lncRNAs) could interact with microRNAs (miRNAs) and indirectly regulate miRNA targets through competing interactions. Therefore, uncovering the competing endogenous RNA (ceRNA) regulatory mechanism of lncRNAs, miRNAs and mRNAs in post-transcriptional level will aid in deciphering the underlying pathogenesis of human polygenic diseases and may unveil new diagnostic and therapeutic opportunities. However, the functional roles of vast majority of cancer specific ncRNAs and their combinational regulation patterns are still insufficiently understood.\nRESULTS: Here we develop an integrative framework called CeModule to discover lncRNA, miRNA and mRNA-associated regulatory modules. We fully utilize the matched expression profiles of lncRNAs, miRNAs and mRNAs and establish a model based on joint orthogonality non-negative matrix factorization for identifying modules. Meanwhile, we impose the experimentally verified miRNA-lncRNA interactions, the validated miRNA-mRNA interactions and the weighted gene-gene network into this framework to improve the module accuracy through the network-based penalties. The sparse regularizations are also used to help this model obtain modular sparse solutions. Finally, an iterative multiplicative updating algorithm is adopted to solve the optimization problem.\nCONCLUSIONS: We applied CeModule to two cancer datasets including ovarian cancer (OV) and uterine corpus endometrial carcinoma (UCEC) obtained from TCGA. The modular analysis indicated that the identified modules involving lncRNAs, miRNAs and mRNAs are significantly associated and functionally enriched in cancer-related biological processes and pathways, which may provide new insights into the complex regulatory mechanism of human diseases at the system level.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2654-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "CeModule: an integrative framework for discovering regulatory patterns from genomic data in cancer", 
    "pagination": "67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b615a91ddc8fd345124bf6e80e13f7bf7d60dfbeb3f9512d67fc6bd261cd167a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30732558"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2654-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111989356"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2654-3", 
      "https://app.dimensions.ai/details/publication/pub.1111989356"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11701_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-019-2654-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2654-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2654-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2654-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2654-3'


 

This table displays all metadata directly associated to this object as RDF triples.

349 TRIPLES      21 PREDICATES      102 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2654-3 schema:about N3b257ab4604a46ccbc0eba609cfda35c
2 N3cb2ad2184c24d0180a33c9713fa46a4
3 N4e9f4acdd53548dca172479b63878d0c
4 N819d7baecb21414bbca1d03875c1405f
5 N86bf4cceebc042cdbc317de2d6a243d4
6 N90dc1f084e2a41ae927ccf42f25ad766
7 Na089d1f8fb4a4bfb835d7369489c28de
8 Nbbd4dba084c74d7289179e1706fd6278
9 Nd05c831991d34fcc92cb09a230a4f762
10 Nd1427f47f36a41b6a9b49334015d5df6
11 Nd571be7c3fd24783a9b281f96bb63ea2
12 Ndf69f4f2561b4c2983e66f010db518ed
13 Nefe6aed1c0424445ab797172e3b142f1
14 Nf6b6ae9886094d028451f51e437343d9
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author N24e4097f0b4c407998cf91d5185149e7
18 schema:citation sg:pub.10.1007/s10107-013-0637-0
19 sg:pub.10.1007/s13277-013-1142-z
20 sg:pub.10.1038/44565
21 sg:pub.10.1038/nature07385
22 sg:pub.10.1038/nature09144
23 sg:pub.10.1038/nature12986
24 sg:pub.10.1038/ng2079
25 sg:pub.10.1038/nmeth1079
26 sg:pub.10.1038/srep06088
27 sg:pub.10.1186/1471-2105-11-419
28 sg:pub.10.1186/1471-2105-14-107
29 sg:pub.10.1186/s12859-017-1557-4
30 https://doi.org/10.1016/j.cell.2011.07.014
31 https://doi.org/10.1016/j.gene.2015.11.023
32 https://doi.org/10.1016/j.ins.2016.11.028
33 https://doi.org/10.1016/j.jbi.2017.01.008
34 https://doi.org/10.1016/j.ygyno.2013.07.095
35 https://doi.org/10.1039/c2mb25386k
36 https://doi.org/10.1073/pnas.0506580102
37 https://doi.org/10.1073/pnas.90.11.4961
38 https://doi.org/10.1093/bib/bbv033
39 https://doi.org/10.1093/bioinformatics/btm134
40 https://doi.org/10.1093/bioinformatics/btt361
41 https://doi.org/10.1093/bioinformatics/btu373
42 https://doi.org/10.1093/bioinformatics/btv159
43 https://doi.org/10.1093/bioinformatics/btw059
44 https://doi.org/10.1093/bioinformatics/btx545
45 https://doi.org/10.1093/nar/gki200
46 https://doi.org/10.1093/nar/gkn851
47 https://doi.org/10.1093/nar/gkq285
48 https://doi.org/10.1093/nar/gkr1161
49 https://doi.org/10.1093/nar/gks1099
50 https://doi.org/10.1093/nar/gks1246
51 https://doi.org/10.1093/nar/gkt1023
52 https://doi.org/10.1093/nar/gkt1181
53 https://doi.org/10.1093/nar/gkt1248
54 https://doi.org/10.1093/nar/gkt1266
55 https://doi.org/10.1093/nar/gkv1094
56 https://doi.org/10.1093/nar/gkv853
57 https://doi.org/10.1093/nar/gkw1079
58 https://doi.org/10.1093/nar/gkw943
59 https://doi.org/10.1101/gr.118992.110
60 https://doi.org/10.1109/access.2017.2672600
61 https://doi.org/10.1109/ijcnn.2014.6889377
62 https://doi.org/10.1109/jbhi.2019.2891779
63 https://doi.org/10.1109/tcbb.2015.2462370
64 https://doi.org/10.1109/tcbb.2018.2864129
65 https://doi.org/10.1109/tkde.2012.51
66 https://doi.org/10.1109/tnb.2016.2556744
67 https://doi.org/10.1126/science.1113329
68 https://doi.org/10.1126/science.1121566
69 https://doi.org/10.1145/1150402.1150420
70 https://doi.org/10.1155/2014/780521
71 https://doi.org/10.1158/0008-5472.can-12-2850
72 https://doi.org/10.1371/journal.pcbi.1004042
73 https://doi.org/10.1371/journal.pone.0018872
74 https://doi.org/10.1371/journal.pone.0080306
75 https://doi.org/10.1371/journal.pone.0169232
76 https://doi.org/10.18632/oncotarget.7312
77 schema:datePublished 2019-12
78 schema:datePublishedReg 2019-12-01
79 schema:description BACKGROUND: Non-coding RNAs (ncRNAs) are emerging as key regulators and play critical roles in a wide range of tumorigenesis. Recent studies have suggested that long non-coding RNAs (lncRNAs) could interact with microRNAs (miRNAs) and indirectly regulate miRNA targets through competing interactions. Therefore, uncovering the competing endogenous RNA (ceRNA) regulatory mechanism of lncRNAs, miRNAs and mRNAs in post-transcriptional level will aid in deciphering the underlying pathogenesis of human polygenic diseases and may unveil new diagnostic and therapeutic opportunities. However, the functional roles of vast majority of cancer specific ncRNAs and their combinational regulation patterns are still insufficiently understood. RESULTS: Here we develop an integrative framework called CeModule to discover lncRNA, miRNA and mRNA-associated regulatory modules. We fully utilize the matched expression profiles of lncRNAs, miRNAs and mRNAs and establish a model based on joint orthogonality non-negative matrix factorization for identifying modules. Meanwhile, we impose the experimentally verified miRNA-lncRNA interactions, the validated miRNA-mRNA interactions and the weighted gene-gene network into this framework to improve the module accuracy through the network-based penalties. The sparse regularizations are also used to help this model obtain modular sparse solutions. Finally, an iterative multiplicative updating algorithm is adopted to solve the optimization problem. CONCLUSIONS: We applied CeModule to two cancer datasets including ovarian cancer (OV) and uterine corpus endometrial carcinoma (UCEC) obtained from TCGA. The modular analysis indicated that the identified modules involving lncRNAs, miRNAs and mRNAs are significantly associated and functionally enriched in cancer-related biological processes and pathways, which may provide new insights into the complex regulatory mechanism of human diseases at the system level.
80 schema:genre research_article
81 schema:inLanguage en
82 schema:isAccessibleForFree true
83 schema:isPartOf Na74a4874f88744d6af0cd172ec6a8459
84 Ndc1d0ee431cf4f87b7fc9570eb582b2a
85 sg:journal.1023786
86 schema:name CeModule: an integrative framework for discovering regulatory patterns from genomic data in cancer
87 schema:pagination 67
88 schema:productId N15fb8023530a497bb7664179abe20254
89 N53dbb3a1e7b84152b506c21159cb11cc
90 N7f8f8030c73f4465a53d47733e7b73b5
91 Nb88b21ceb8994639b1b977787c8a66ad
92 Ncaec2f9e9cf54e659a185332cc86c9d8
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111989356
94 https://doi.org/10.1186/s12859-019-2654-3
95 schema:sdDatePublished 2019-04-11T11:18
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N48434c8b373941a4b695e626648277e7
98 schema:url https://link.springer.com/10.1186%2Fs12859-019-2654-3
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0104a0f376d8412aace06bee8baa5751 rdf:first N96b618616ef646de8e027f72321bf3a8
103 rdf:rest N57d8386bbcc44ed59610dfabac9cb110
104 N15fb8023530a497bb7664179abe20254 schema:name readcube_id
105 schema:value b615a91ddc8fd345124bf6e80e13f7bf7d60dfbeb3f9512d67fc6bd261cd167a
106 rdf:type schema:PropertyValue
107 N24e4097f0b4c407998cf91d5185149e7 rdf:first N74f81308d7854c3594a3e594dabf1c8f
108 rdf:rest N8000421fb5734fb989324789573d04c0
109 N38c8754d7270447d86703265e9bdf5e6 rdf:first N516b61fd64af45e19a7caf09199ae63a
110 rdf:rest rdf:nil
111 N3b257ab4604a46ccbc0eba609cfda35c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name MicroRNAs
113 rdf:type schema:DefinedTerm
114 N3cb2ad2184c24d0180a33c9713fa46a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name RNA, Long Noncoding
116 rdf:type schema:DefinedTerm
117 N430f198ac41b4ba392a953a2d1a2aee4 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
118 schema:familyName Li
119 schema:givenName Guanghui
120 rdf:type schema:Person
121 N48434c8b373941a4b695e626648277e7 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N4e9f4acdd53548dca172479b63878d0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Ovarian Neoplasms
125 rdf:type schema:DefinedTerm
126 N516b61fd64af45e19a7caf09199ae63a schema:affiliation https://www.grid.ac/institutes/grid.67293.39
127 schema:familyName Cao
128 schema:givenName Buwen
129 rdf:type schema:Person
130 N53dbb3a1e7b84152b506c21159cb11cc schema:name nlm_unique_id
131 schema:value 100965194
132 rdf:type schema:PropertyValue
133 N57d8386bbcc44ed59610dfabac9cb110 rdf:first N430f198ac41b4ba392a953a2d1a2aee4
134 rdf:rest N38c8754d7270447d86703265e9bdf5e6
135 N74f81308d7854c3594a3e594dabf1c8f schema:affiliation https://www.grid.ac/institutes/grid.411427.5
136 schema:familyName Xiao
137 schema:givenName Qiu
138 rdf:type schema:Person
139 N7f8f8030c73f4465a53d47733e7b73b5 schema:name pubmed_id
140 schema:value 30732558
141 rdf:type schema:PropertyValue
142 N8000421fb5734fb989324789573d04c0 rdf:first Na17c5f9d039148e7ae5b7a2aa6f97dac
143 rdf:rest N8e36d6a1e68844918e90ef9b4f560ebc
144 N819d7baecb21414bbca1d03875c1405f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Gene Regulatory Networks
146 rdf:type schema:DefinedTerm
147 N86bf4cceebc042cdbc317de2d6a243d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Female
149 rdf:type schema:DefinedTerm
150 N871e467c123e430097ca9d7a48732475 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
151 schema:familyName Liang
152 schema:givenName Cheng
153 rdf:type schema:Person
154 N8e36d6a1e68844918e90ef9b4f560ebc rdf:first N871e467c123e430097ca9d7a48732475
155 rdf:rest N0104a0f376d8412aace06bee8baa5751
156 N90dc1f084e2a41ae927ccf42f25ad766 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Gene Expression Regulation, Neoplastic
158 rdf:type schema:DefinedTerm
159 N96b618616ef646de8e027f72321bf3a8 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
160 schema:familyName Cai
161 schema:givenName Jie
162 rdf:type schema:Person
163 Na089d1f8fb4a4bfb835d7369489c28de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Reproducibility of Results
165 rdf:type schema:DefinedTerm
166 Na17c5f9d039148e7ae5b7a2aa6f97dac schema:affiliation https://www.grid.ac/institutes/grid.67293.39
167 schema:familyName Luo
168 schema:givenName Jiawei
169 rdf:type schema:Person
170 Na74a4874f88744d6af0cd172ec6a8459 schema:issueNumber 1
171 rdf:type schema:PublicationIssue
172 Nb88b21ceb8994639b1b977787c8a66ad schema:name dimensions_id
173 schema:value pub.1111989356
174 rdf:type schema:PropertyValue
175 Nbbd4dba084c74d7289179e1706fd6278 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Gene Ontology
177 rdf:type schema:DefinedTerm
178 Ncaec2f9e9cf54e659a185332cc86c9d8 schema:name doi
179 schema:value 10.1186/s12859-019-2654-3
180 rdf:type schema:PropertyValue
181 Nd05c831991d34fcc92cb09a230a4f762 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Genomics
183 rdf:type schema:DefinedTerm
184 Nd1427f47f36a41b6a9b49334015d5df6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name RNA, Messenger
186 rdf:type schema:DefinedTerm
187 Nd571be7c3fd24783a9b281f96bb63ea2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Databases, Genetic
189 rdf:type schema:DefinedTerm
190 Ndc1d0ee431cf4f87b7fc9570eb582b2a schema:volumeNumber 20
191 rdf:type schema:PublicationVolume
192 Ndf69f4f2561b4c2983e66f010db518ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Neoplasms
194 rdf:type schema:DefinedTerm
195 Nefe6aed1c0424445ab797172e3b142f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Humans
197 rdf:type schema:DefinedTerm
198 Nf6b6ae9886094d028451f51e437343d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Algorithms
200 rdf:type schema:DefinedTerm
201 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
202 schema:name Biological Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
205 schema:name Genetics
206 rdf:type schema:DefinedTerm
207 sg:journal.1023786 schema:issn 1471-2105
208 schema:name BMC Bioinformatics
209 rdf:type schema:Periodical
210 sg:pub.10.1007/s10107-013-0637-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037409488
211 https://doi.org/10.1007/s10107-013-0637-0
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s13277-013-1142-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003630716
214 https://doi.org/10.1007/s13277-013-1142-z
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/44565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052721759
217 https://doi.org/10.1038/44565
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nature07385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039570773
220 https://doi.org/10.1038/nature07385
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nature09144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050391113
223 https://doi.org/10.1038/nature09144
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nature12986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025529308
226 https://doi.org/10.1038/nature12986
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/ng2079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000182181
229 https://doi.org/10.1038/ng2079
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/nmeth1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028333288
232 https://doi.org/10.1038/nmeth1079
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/srep06088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013310277
235 https://doi.org/10.1038/srep06088
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1471-2105-11-419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684123
238 https://doi.org/10.1186/1471-2105-11-419
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1471-2105-14-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039788304
241 https://doi.org/10.1186/1471-2105-14-107
242 rdf:type schema:CreativeWork
243 sg:pub.10.1186/s12859-017-1557-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249933
244 https://doi.org/10.1186/s12859-017-1557-4
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.cell.2011.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053021425
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.gene.2015.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014266202
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.ins.2016.11.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025155909
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.jbi.2017.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050008108
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.ygyno.2013.07.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051296744
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1039/c2mb25386k schema:sameAs https://app.dimensions.ai/details/publication/pub.1042641068
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1073/pnas.90.11.4961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003932293
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/bib/bbv033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413086
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/btm134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045688640
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/bioinformatics/btt361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053233704
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/bioinformatics/btu373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015271190
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/bioinformatics/btv159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044235097
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/bioinformatics/btw059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008960880
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/bioinformatics/btx545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091466609
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/nar/gki200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051113890
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1093/nar/gkn851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051949960
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1093/nar/gkq285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036462093
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1093/nar/gkr1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001946316
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/nar/gks1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008917836
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/nar/gks1246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033591666
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1093/nar/gkt1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043655731
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1093/nar/gkt1181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016904256
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1093/nar/gkt1248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031236821
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1093/nar/gkt1266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050781918
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1093/nar/gkv1094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043614046
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1093/nar/gkv853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041587303
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1093/nar/gkw1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036597085
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1093/nar/gkw943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043223154
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1101/gr.118992.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037330541
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1109/access.2017.2672600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083935981
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1109/ijcnn.2014.6889377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093232438
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1109/jbhi.2019.2891779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111328503
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1109/tcbb.2015.2462370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541492
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1109/tcbb.2018.2864129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106063490
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1109/tkde.2012.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662644
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1109/tnb.2016.2556744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714221
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1126/science.1113329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023422868
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1126/science.1121566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453316
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1145/1150402.1150420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024809910
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1155/2014/780521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048058787
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1158/0008-5472.can-12-2850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018074315
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1371/journal.pcbi.1004042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000810319
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1371/journal.pone.0018872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043188660
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1371/journal.pone.0080306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026009839
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1371/journal.pone.0169232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067097051
337 rdf:type schema:CreativeWork
338 https://doi.org/10.18632/oncotarget.7312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037311149
339 rdf:type schema:CreativeWork
340 https://www.grid.ac/institutes/grid.410585.d schema:alternateName Shandong Normal University
341 schema:name College of Information Science and Engineering, Shandong Normal University, 250000, Jinan, China
342 rdf:type schema:Organization
343 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
344 schema:name College of Computer Science and Electronic Engineering, Hunan University, 410082, Changsha, China
345 Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, 410081, Changsha, China
346 rdf:type schema:Organization
347 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
348 schema:name College of Computer Science and Electronic Engineering, Hunan University, 410082, Changsha, China
349 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...