Disease Pathway Cut for Multi-Target drugs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sunjoo Bang, Sangjoon Son, Sooyoung Kim, Hyunjung Shin

ABSTRACT

BACKGROUND: Biomarker discovery studies have been moving the focus from a single target gene to a set of target genes. However, the number of target genes in a drug should be minimum to avoid drug side-effect or toxicity. But still, the set of target genes should effectively block all possible paths of disease progression. METHODS: In this article, we propose a network based computational analysis for target gene identification for multi-target drugs. The min-cut algorithm is employed to cut all the paths from onset genes to apoptotic genes on a disease pathway. If the pathway network is completely disconnected, development of disease will not further go on. The genes corresponding to the end points of the cutting edges are identified as candidate target genes for a multi-target drug. RESULTS AND CONCLUSIONS: The proposed method was applied to 10 disease pathways. In total, thirty candidate genes were suggested. The result was validated with gene set enrichment analysis software, PubMed literature review and de facto drug targets. More... »

PAGES

74

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2638-3

DOI

http://dx.doi.org/10.1186/s12859-019-2638-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112097160

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30760209


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Development", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, 16499, Suwon-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bang", 
        "givenName": "Sunjoo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, 16499, Suwon-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Son", 
        "givenName": "Sangjoon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sooyoung", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, 16499, Suwon-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Hyunjung", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-007-7975-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000466021", 
          "https://doi.org/10.1007/978-94-007-7975-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.1.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001521131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.12-12-1443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001961208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbapap.2003.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002925051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20071619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004113002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20071619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004113002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmed.2004.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004655365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddu309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004951138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3mb25382a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005108771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011517405", 
          "https://doi.org/10.1038/nmeth.3734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017242679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2014.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017680285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m002466200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019373602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cdd.4400476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019573155", 
          "https://doi.org/10.1038/sj.cdd.4400476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cdd.4400476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019573155", 
          "https://doi.org/10.1038/sj.cdd.4400476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-013-1286-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020080863", 
          "https://doi.org/10.1007/s00439-013-1286-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-013-1286-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020080863", 
          "https://doi.org/10.1007/s00439-013-1286-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2012.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020400593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021371713", 
          "https://doi.org/10.1038/nrg2918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021371713", 
          "https://doi.org/10.1038/nrg2918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcla.21986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023129321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-7-139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024109867", 
          "https://doi.org/10.1186/1752-0509-7-139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026087862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0040262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029345066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033901233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.07.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034719740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037060648", 
          "https://doi.org/10.1038/nmeth.3440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000134061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037082069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038990326", 
          "https://doi.org/10.1038/35075138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038990326", 
          "https://doi.org/10.1038/35075138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/263867.263872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048412775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tips.2005.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048836974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050053630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052471554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0892-345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052929734", 
          "https://doi.org/10.1038/ng0892-345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scisignal.2001699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062682277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1956-045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074739236", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1389450117666160101120822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079202662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1354750x.2017.1306752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084164703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ane.12761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084745071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2017.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085068092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-10-0126-0_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092085239", 
          "https://doi.org/10.1007/978-981-10-0126-0_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.23061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099635658"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Biomarker discovery studies have been moving the focus from a single target gene to a set of target genes. However, the number of target genes in a drug should be minimum to avoid drug side-effect or toxicity. But still, the set of target genes should effectively block all possible paths of disease progression.\nMETHODS: In this article, we propose a network based computational analysis for target gene identification for multi-target drugs. The min-cut algorithm is employed to cut all the paths from onset genes to apoptotic genes on a disease pathway. If the pathway network is completely disconnected, development of disease will not further go on. The genes corresponding to the end points of the cutting edges are identified as candidate target genes for a multi-target drug.\nRESULTS AND CONCLUSIONS: The proposed method was applied to 10 disease pathways. In total, thirty candidate genes were suggested. The result was validated with gene set enrichment analysis software, PubMed literature review and de facto drug targets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2638-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Disease Pathway Cut for Multi-Target drugs", 
    "pagination": "74", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5b183790c19913931639dad5a3dde20ea164ddcba98e20d5f8dc6cdebbd209dd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30760209"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2638-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112097160"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2638-3", 
      "https://app.dimensions.ai/details/publication/pub.1112097160"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60375_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-019-2638-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2638-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2638-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2638-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2638-3'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      75 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2638-3 schema:about N020627e105cd41afb11bef836727ede0
2 N3a02008f51a74623933bcaf08baaba54
3 N6efab98adab146dfa076dd12165b7500
4 Na8f07a2f76d842d0bc0ed41212b40022
5 Nc01f84a89e964667a09422254cd31b42
6 Nc9393516158b440c8199a2081ababbbb
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N2ec29468baa446fe9a3d05e3f8d3e6e2
10 schema:citation sg:pub.10.1007/978-94-007-7975-4_2
11 sg:pub.10.1007/978-981-10-0126-0_25
12 sg:pub.10.1007/s00439-013-1286-3
13 sg:pub.10.1038/35075138
14 sg:pub.10.1038/ng0892-345
15 sg:pub.10.1038/nmeth.3440
16 sg:pub.10.1038/nmeth.3734
17 sg:pub.10.1038/nrg2918
18 sg:pub.10.1038/sj.cdd.4400476
19 sg:pub.10.1186/1752-0509-7-139
20 https://app.dimensions.ai/details/publication/pub.1074739236
21 https://doi.org/10.1002/jcla.21986
22 https://doi.org/10.1016/j.bbapap.2003.11.019
23 https://doi.org/10.1016/j.molmed.2004.07.001
24 https://doi.org/10.1016/j.neurobiolaging.2012.02.020
25 https://doi.org/10.1016/j.neurobiolaging.2014.11.009
26 https://doi.org/10.1016/j.neurobiolaging.2017.04.012
27 https://doi.org/10.1016/j.neuroimage.2008.07.058
28 https://doi.org/10.1016/j.tips.2005.02.007
29 https://doi.org/10.1039/c3mb25382a
30 https://doi.org/10.1042/bj20071619
31 https://doi.org/10.1073/pnas.0506580102
32 https://doi.org/10.1074/jbc.m002466200
33 https://doi.org/10.1080/1354750x.2017.1306752
34 https://doi.org/10.1093/bioinformatics/btm369
35 https://doi.org/10.1093/bioinformatics/btq082
36 https://doi.org/10.1093/bioinformatics/btq714
37 https://doi.org/10.1093/hmg/ddu309
38 https://doi.org/10.1093/nar/27.1.29
39 https://doi.org/10.1111/ane.12761
40 https://doi.org/10.1126/scisignal.2001699
41 https://doi.org/10.1145/263867.263872
42 https://doi.org/10.1159/000134061
43 https://doi.org/10.1371/journal.pcbi.1004219
44 https://doi.org/10.1371/journal.pgen.0020088
45 https://doi.org/10.1371/journal.pone.0040262
46 https://doi.org/10.1634/theoncologist.12-12-1443
47 https://doi.org/10.18632/oncotarget.23061
48 https://doi.org/10.2174/1389450117666160101120822
49 https://doi.org/10.4153/cjm-1956-045-5
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description BACKGROUND: Biomarker discovery studies have been moving the focus from a single target gene to a set of target genes. However, the number of target genes in a drug should be minimum to avoid drug side-effect or toxicity. But still, the set of target genes should effectively block all possible paths of disease progression. METHODS: In this article, we propose a network based computational analysis for target gene identification for multi-target drugs. The min-cut algorithm is employed to cut all the paths from onset genes to apoptotic genes on a disease pathway. If the pathway network is completely disconnected, development of disease will not further go on. The genes corresponding to the end points of the cutting edges are identified as candidate target genes for a multi-target drug. RESULTS AND CONCLUSIONS: The proposed method was applied to 10 disease pathways. In total, thirty candidate genes were suggested. The result was validated with gene set enrichment analysis software, PubMed literature review and de facto drug targets.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N8bb9ea250c6347458f80a7c4656814ce
57 Nd44fb6b75bfe4a419d843d05c56ad793
58 sg:journal.1023786
59 schema:name Disease Pathway Cut for Multi-Target drugs
60 schema:pagination 74
61 schema:productId N10c0c82e05044b36b66c0a5a104d31b4
62 N159efc7623a04b039ea038f2759d52f3
63 N9e80219ba8df4e1bbc5ec3dc6b2554fd
64 Na339d6e5c08f4309adf87483b0c6e270
65 Nfe9d0edead9247b1a1efac14d287299f
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112097160
67 https://doi.org/10.1186/s12859-019-2638-3
68 schema:sdDatePublished 2019-04-11T11:06
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nf4981d1a911d4dc9a84f47e411efac33
71 schema:url https://link.springer.com/10.1186%2Fs12859-019-2638-3
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N020627e105cd41afb11bef836727ede0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Algorithms
77 rdf:type schema:DefinedTerm
78 N025a39db96764b179bd8c5172b001a02 rdf:first N459dc33f419c427e8bf1aaa2e8a30034
79 rdf:rest N853854e9e8984e3dbb1289355682765d
80 N10c0c82e05044b36b66c0a5a104d31b4 schema:name doi
81 schema:value 10.1186/s12859-019-2638-3
82 rdf:type schema:PropertyValue
83 N159efc7623a04b039ea038f2759d52f3 schema:name pubmed_id
84 schema:value 30760209
85 rdf:type schema:PropertyValue
86 N2ec29468baa446fe9a3d05e3f8d3e6e2 rdf:first N766e2865c32d4e97af425da700d6eee5
87 rdf:rest N69fa05de523f4ee5b98cf805bde3afd2
88 N3a02008f51a74623933bcaf08baaba54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Drug Development
90 rdf:type schema:DefinedTerm
91 N459dc33f419c427e8bf1aaa2e8a30034 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
92 schema:familyName Kim
93 schema:givenName Sooyoung
94 rdf:type schema:Person
95 N69fa05de523f4ee5b98cf805bde3afd2 rdf:first N736449464127448da3d63f9c9fec58d3
96 rdf:rest N025a39db96764b179bd8c5172b001a02
97 N6efab98adab146dfa076dd12165b7500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 N736449464127448da3d63f9c9fec58d3 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
101 schema:familyName Son
102 schema:givenName Sangjoon
103 rdf:type schema:Person
104 N766e2865c32d4e97af425da700d6eee5 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
105 schema:familyName Bang
106 schema:givenName Sunjoo
107 rdf:type schema:Person
108 N853854e9e8984e3dbb1289355682765d rdf:first Ne1be75d21ac243a89e6057ab9f8ec222
109 rdf:rest rdf:nil
110 N8bb9ea250c6347458f80a7c4656814ce schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 N9e80219ba8df4e1bbc5ec3dc6b2554fd schema:name dimensions_id
113 schema:value pub.1112097160
114 rdf:type schema:PropertyValue
115 Na339d6e5c08f4309adf87483b0c6e270 schema:name readcube_id
116 schema:value 5b183790c19913931639dad5a3dde20ea164ddcba98e20d5f8dc6cdebbd209dd
117 rdf:type schema:PropertyValue
118 Na8f07a2f76d842d0bc0ed41212b40022 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Disease
120 rdf:type schema:DefinedTerm
121 Nc01f84a89e964667a09422254cd31b42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Disease Progression
123 rdf:type schema:DefinedTerm
124 Nc9393516158b440c8199a2081ababbbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Software
126 rdf:type schema:DefinedTerm
127 Nd44fb6b75bfe4a419d843d05c56ad793 schema:volumeNumber 20
128 rdf:type schema:PublicationVolume
129 Ne1be75d21ac243a89e6057ab9f8ec222 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
130 schema:familyName Shin
131 schema:givenName Hyunjung
132 rdf:type schema:Person
133 Nf4981d1a911d4dc9a84f47e411efac33 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nfe9d0edead9247b1a1efac14d287299f schema:name nlm_unique_id
136 schema:value 100965194
137 rdf:type schema:PropertyValue
138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
139 schema:name Biological Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
142 schema:name Genetics
143 rdf:type schema:DefinedTerm
144 sg:journal.1023786 schema:issn 1471-2105
145 schema:name BMC Bioinformatics
146 rdf:type schema:Periodical
147 sg:pub.10.1007/978-94-007-7975-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000466021
148 https://doi.org/10.1007/978-94-007-7975-4_2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-981-10-0126-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092085239
151 https://doi.org/10.1007/978-981-10-0126-0_25
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00439-013-1286-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020080863
154 https://doi.org/10.1007/s00439-013-1286-3
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/35075138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038990326
157 https://doi.org/10.1038/35075138
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ng0892-345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052929734
160 https://doi.org/10.1038/ng0892-345
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nmeth.3440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037060648
163 https://doi.org/10.1038/nmeth.3440
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth.3734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011517405
166 https://doi.org/10.1038/nmeth.3734
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nrg2918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371713
169 https://doi.org/10.1038/nrg2918
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/sj.cdd.4400476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019573155
172 https://doi.org/10.1038/sj.cdd.4400476
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1752-0509-7-139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024109867
175 https://doi.org/10.1186/1752-0509-7-139
176 rdf:type schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1074739236 schema:CreativeWork
178 https://doi.org/10.1002/jcla.21986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023129321
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.bbapap.2003.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002925051
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.molmed.2004.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004655365
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.neurobiolaging.2012.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020400593
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.neurobiolaging.2014.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017680285
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.neurobiolaging.2017.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085068092
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.neuroimage.2008.07.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034719740
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.tips.2005.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048836974
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/c3mb25382a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005108771
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1042/bj20071619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004113002
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1074/jbc.m002466200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019373602
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/1354750x.2017.1306752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084164703
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/btm369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052471554
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/bioinformatics/btq082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017242679
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/btq714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033901233
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/hmg/ddu309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004951138
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/27.1.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001521131
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/ane.12761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084745071
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/scisignal.2001699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062682277
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1145/263867.263872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048412775
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1159/000134061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037082069
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pcbi.1004219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026087862
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pgen.0020088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050053630
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1371/journal.pone.0040262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345066
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1634/theoncologist.12-12-1443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001961208
229 rdf:type schema:CreativeWork
230 https://doi.org/10.18632/oncotarget.23061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099635658
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2174/1389450117666160101120822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079202662
233 rdf:type schema:CreativeWork
234 https://doi.org/10.4153/cjm-1956-045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264069
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
237 schema:name Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.251916.8 schema:alternateName Ajou University
240 schema:name Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, 16499, Suwon-si, Gyeonggi-do, Republic of Korea
241 Department of Psychiatry, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, 16499, Suwon-si, Gyeonggi-do, Republic of Korea
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...