PIXER: an automated particle-selection method based on segmentation using a deep neural network View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Jingrong Zhang, Zihao Wang, Yu Chen, Renmin Han, Zhiyong Liu, Fei Sun, Fa Zhang

ABSTRACT

BACKGROUND: Cryo-electron microscopy (cryo-EM) has become a widely used tool for determining the structures of proteins and macromolecular complexes. To acquire the input for single-particle cryo-EM reconstruction, researchers must select hundreds of thousands of particles from micrographs. As the signal-to-noise ratio (SNR) of micrographs is extremely low, the performance of automated particle-selection methods is still unable to meet research requirements. To free researchers from this laborious work and to acquire a large number of high-quality particles, we propose an automated particle-selection method (PIXER) based on the idea of segmentation using a deep neural network. RESULTS: First, to accommodate low-SNR conditions, we convert micrographs into probability density maps using a segmentation network. These probability density maps indicate the likelihood that each pixel of a micrograph is part of a particle instead of just background noise. Particles selected from density maps have a more robust signal than do those directly selected from the original noisy micrographs. Second, at present, there is no segmentation-training dataset for cryo-EM. To enable our plan, we present an automated method to generate a training dataset for segmentation using real-world data. Third, we propose a grid-based, local-maximum method to locate the particles from the probability density maps. We tested our method on simulated and real-world experimental datasets and compared PIXER with the mainstream methods RELION, DeepEM and DeepPicker to demonstrate its performance. The results indicate that, as a fully automated method, PIXER can acquire results as good as the semi-automated methods RELION and DeepEM. CONCLUSION: To our knowledge, our work is the first to address the particle-selection problem using the segmentation network concept. As a fully automated particle-selection method, PIXER can free researchers from laborious particle-selection work. Based on the results of experiments, PIXER can acquire accurate results under low-SNR conditions within minutes. More... »

PAGES

41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-019-2614-y

DOI

http://dx.doi.org/10.1186/s12859-019-2614-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111512097

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30658571


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "High Performance Computer Research Center, Institute of Computing Technology Chinese Academy of Sciences, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jingrong", 
        "id": "sg:person.013133632737.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013133632737.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "High Performance Computer Research Center, Institute of Computing Technology Chinese Academy of Sciences, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zihao", 
        "id": "sg:person.011540671737.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011540671737.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "High Performance Computer Research Center, Institute of Computing Technology Chinese Academy of Sciences, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yu", 
        "id": "sg:person.01214710250.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214710250.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdullah University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.45672.32", 
          "name": [
            "Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), 23955-6900, Thuwal, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Renmin", 
        "id": "sg:person.01065242030.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065242030.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute Of Computing Technology", 
          "id": "https://www.grid.ac/institutes/grid.424936.e", 
          "name": [
            "High Performance Computer Research Center, Institute of Computing Technology Chinese Academy of Sciences, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhiyong", 
        "id": "sg:person.01215543140.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215543140.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biophysics", 
          "id": "https://www.grid.ac/institutes/grid.418856.6", 
          "name": [
            "University of Chinese Academy of Sciences, Beijing, China", 
            "National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China", 
            "Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Fei", 
        "id": "sg:person.01026367072.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026367072.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute Of Computing Technology", 
          "id": "https://www.grid.ac/institutes/grid.424936.e", 
          "name": [
            "High Performance Computer Research Center, Institute of Computing Technology Chinese Academy of Sciences, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fa", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jsb.2016.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001976293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002147693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2007.11.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003846239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2003.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007800965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008337710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010506048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010506048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010506048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010506048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013340814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2012.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019988217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022801515", 
          "https://doi.org/10.1038/ncomms12524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2014.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031002456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.03080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032558561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2013.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034422328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037497523", 
          "https://doi.org/10.1038/nmeth.3806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042852549", 
          "https://doi.org/10.1038/nature12822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv1126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042935912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2013.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048109749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2014.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053316395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2015.2415787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/16.12.326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063405080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-bioeng-071516-044442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084228312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2017.2699184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085304410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2017.2699184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085304410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2017.2699184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085304410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085571294", 
          "https://doi.org/10.1038/nature22394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085571294", 
          "https://doi.org/10.1038/nature22394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090326400", 
          "https://doi.org/10.1038/nmeth.4347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090326400", 
          "https://doi.org/10.1038/nmeth.4347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1757-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090851467", 
          "https://doi.org/10.1186/s12859-017-1757-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1757-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090851467", 
          "https://doi.org/10.1186/s12859-017-1757-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093626237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4982020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096889371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmolb.2018.00050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104373446"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Cryo-electron microscopy (cryo-EM) has become a widely used tool for determining the structures of proteins and macromolecular complexes. To acquire the input for single-particle cryo-EM reconstruction, researchers must select hundreds of thousands of particles from micrographs. As the signal-to-noise ratio (SNR) of micrographs is extremely low, the performance of automated particle-selection methods is still unable to meet research requirements. To free researchers from this laborious work and to acquire a large number of high-quality particles, we propose an automated particle-selection method (PIXER) based on the idea of segmentation using a deep neural network.\nRESULTS: First, to accommodate low-SNR conditions, we convert micrographs into probability density maps using a segmentation network. These probability density maps indicate the likelihood that each pixel of a micrograph is part of a particle instead of just background noise. Particles selected from density maps have a more robust signal than do those directly selected from the original noisy micrographs. Second, at present, there is no segmentation-training dataset for cryo-EM. To enable our plan, we present an automated method to generate a training dataset for segmentation using real-world data. Third, we propose a grid-based, local-maximum method to locate the particles from the probability density maps. We tested our method on simulated and real-world experimental datasets and compared PIXER with the mainstream methods RELION, DeepEM and DeepPicker to demonstrate its performance. The results indicate that, as a fully automated method, PIXER can acquire results as good as the semi-automated methods RELION and DeepEM.\nCONCLUSION: To our knowledge, our work is the first to address the particle-selection problem using the segmentation network concept. As a fully automated particle-selection method, PIXER can free researchers from laborious particle-selection work. Based on the results of experiments, PIXER can acquire accurate results under low-SNR conditions within minutes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-019-2614-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "PIXER: an automated particle-selection method based on segmentation using a deep neural network", 
    "pagination": "41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ac6f0af43b51275691ad1de8e275e8cb658cb9a1acbc385b7362ccbd6cfffda2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30658571"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-019-2614-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111512097"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-019-2614-y", 
      "https://app.dimensions.ai/details/publication/pub.1111512097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100779_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-019-2614-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2614-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2614-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2614-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-019-2614-y'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-019-2614-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Neaefcf03b7a54ed8bf160f44cd66dd4d
4 schema:citation sg:pub.10.1038/nature12822
5 sg:pub.10.1038/nature22394
6 sg:pub.10.1038/ncomms12524
7 sg:pub.10.1038/nmeth.3806
8 sg:pub.10.1038/nmeth.4347
9 sg:pub.10.1186/s12859-017-1757-y
10 https://doi.org/10.1006/jmbi.2000.3909
11 https://doi.org/10.1006/jmbi.2001.5133
12 https://doi.org/10.1016/j.bbrc.2007.11.072
13 https://doi.org/10.1016/j.cell.2016.12.023
14 https://doi.org/10.1016/j.jsb.2003.09.033
15 https://doi.org/10.1016/j.jsb.2012.09.006
16 https://doi.org/10.1016/j.jsb.2013.05.008
17 https://doi.org/10.1016/j.jsb.2013.09.015
18 https://doi.org/10.1016/j.jsb.2014.11.010
19 https://doi.org/10.1016/j.jsb.2016.07.006
20 https://doi.org/10.1016/j.patcog.2016.07.022
21 https://doi.org/10.1016/j.tibs.2014.10.005
22 https://doi.org/10.1063/1.4982020
23 https://doi.org/10.1093/nar/gkv1126
24 https://doi.org/10.1109/cvpr.2015.7298965
25 https://doi.org/10.1109/tcbb.2015.2415787
26 https://doi.org/10.1109/tpami.2017.2699184
27 https://doi.org/10.1146/annurev-bioeng-071516-044442
28 https://doi.org/10.1167/16.12.326
29 https://doi.org/10.3389/fmolb.2018.00050
30 https://doi.org/10.7554/elife.03080
31 schema:datePublished 2019-12
32 schema:datePublishedReg 2019-12-01
33 schema:description BACKGROUND: Cryo-electron microscopy (cryo-EM) has become a widely used tool for determining the structures of proteins and macromolecular complexes. To acquire the input for single-particle cryo-EM reconstruction, researchers must select hundreds of thousands of particles from micrographs. As the signal-to-noise ratio (SNR) of micrographs is extremely low, the performance of automated particle-selection methods is still unable to meet research requirements. To free researchers from this laborious work and to acquire a large number of high-quality particles, we propose an automated particle-selection method (PIXER) based on the idea of segmentation using a deep neural network. RESULTS: First, to accommodate low-SNR conditions, we convert micrographs into probability density maps using a segmentation network. These probability density maps indicate the likelihood that each pixel of a micrograph is part of a particle instead of just background noise. Particles selected from density maps have a more robust signal than do those directly selected from the original noisy micrographs. Second, at present, there is no segmentation-training dataset for cryo-EM. To enable our plan, we present an automated method to generate a training dataset for segmentation using real-world data. Third, we propose a grid-based, local-maximum method to locate the particles from the probability density maps. We tested our method on simulated and real-world experimental datasets and compared PIXER with the mainstream methods RELION, DeepEM and DeepPicker to demonstrate its performance. The results indicate that, as a fully automated method, PIXER can acquire results as good as the semi-automated methods RELION and DeepEM. CONCLUSION: To our knowledge, our work is the first to address the particle-selection problem using the segmentation network concept. As a fully automated particle-selection method, PIXER can free researchers from laborious particle-selection work. Based on the results of experiments, PIXER can acquire accurate results under low-SNR conditions within minutes.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N58972b67378a491d9c21f8980ec0d643
38 Nd522ca009fc944609f6ec7fe3b7c0095
39 sg:journal.1023786
40 schema:name PIXER: an automated particle-selection method based on segmentation using a deep neural network
41 schema:pagination 41
42 schema:productId N24687eab3df942c1b137228c5e22db5e
43 N344703df9b4c439398958345cc7038dc
44 Nd1314e9578b44fdc8ab90bb4d87a6e76
45 Nf5c5803281b848bb85cdc21a24c3d160
46 Nfa2f507287154ab88986c7a5b8bfc8ac
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111512097
48 https://doi.org/10.1186/s12859-019-2614-y
49 schema:sdDatePublished 2019-04-11T08:55
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N71ecbe6fdf514c6d98e8dc37750a0366
52 schema:url https://link.springer.com/10.1186%2Fs12859-019-2614-y
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N06d840e1548e449ebd45a9dfb6757598 rdf:first N4b4b6254d58848abb8b1104953844e25
57 rdf:rest rdf:nil
58 N20ddfd008beb421885588aaad6b9190e rdf:first sg:person.01214710250.98
59 rdf:rest N611fd694717d4666b767632817827fc2
60 N24687eab3df942c1b137228c5e22db5e schema:name dimensions_id
61 schema:value pub.1111512097
62 rdf:type schema:PropertyValue
63 N344703df9b4c439398958345cc7038dc schema:name nlm_unique_id
64 schema:value 100965194
65 rdf:type schema:PropertyValue
66 N3fe03b6a318c4aae956eb1f691adf620 rdf:first sg:person.01215543140.20
67 rdf:rest N6d999e9704cc41548b01bae1435bfe33
68 N4b4b6254d58848abb8b1104953844e25 schema:affiliation https://www.grid.ac/institutes/grid.424936.e
69 schema:familyName Zhang
70 schema:givenName Fa
71 rdf:type schema:Person
72 N518a37f563d64b679f1743db6f67a2c9 rdf:first sg:person.011540671737.18
73 rdf:rest N20ddfd008beb421885588aaad6b9190e
74 N58972b67378a491d9c21f8980ec0d643 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N611fd694717d4666b767632817827fc2 rdf:first sg:person.01065242030.90
77 rdf:rest N3fe03b6a318c4aae956eb1f691adf620
78 N6d999e9704cc41548b01bae1435bfe33 rdf:first sg:person.01026367072.53
79 rdf:rest N06d840e1548e449ebd45a9dfb6757598
80 N71ecbe6fdf514c6d98e8dc37750a0366 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nd1314e9578b44fdc8ab90bb4d87a6e76 schema:name doi
83 schema:value 10.1186/s12859-019-2614-y
84 rdf:type schema:PropertyValue
85 Nd522ca009fc944609f6ec7fe3b7c0095 schema:volumeNumber 20
86 rdf:type schema:PublicationVolume
87 Neaefcf03b7a54ed8bf160f44cd66dd4d rdf:first sg:person.013133632737.06
88 rdf:rest N518a37f563d64b679f1743db6f67a2c9
89 Nf5c5803281b848bb85cdc21a24c3d160 schema:name readcube_id
90 schema:value ac6f0af43b51275691ad1de8e275e8cb658cb9a1acbc385b7362ccbd6cfffda2
91 rdf:type schema:PropertyValue
92 Nfa2f507287154ab88986c7a5b8bfc8ac schema:name pubmed_id
93 schema:value 30658571
94 rdf:type schema:PropertyValue
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
99 schema:name Artificial Intelligence and Image Processing
100 rdf:type schema:DefinedTerm
101 sg:journal.1023786 schema:issn 1471-2105
102 schema:name BMC Bioinformatics
103 rdf:type schema:Periodical
104 sg:person.01026367072.53 schema:affiliation https://www.grid.ac/institutes/grid.418856.6
105 schema:familyName Sun
106 schema:givenName Fei
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026367072.53
108 rdf:type schema:Person
109 sg:person.01065242030.90 schema:affiliation https://www.grid.ac/institutes/grid.45672.32
110 schema:familyName Han
111 schema:givenName Renmin
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065242030.90
113 rdf:type schema:Person
114 sg:person.011540671737.18 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
115 schema:familyName Wang
116 schema:givenName Zihao
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011540671737.18
118 rdf:type schema:Person
119 sg:person.01214710250.98 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
120 schema:familyName Chen
121 schema:givenName Yu
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214710250.98
123 rdf:type schema:Person
124 sg:person.01215543140.20 schema:affiliation https://www.grid.ac/institutes/grid.424936.e
125 schema:familyName Liu
126 schema:givenName Zhiyong
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215543140.20
128 rdf:type schema:Person
129 sg:person.013133632737.06 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
130 schema:familyName Zhang
131 schema:givenName Jingrong
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013133632737.06
133 rdf:type schema:Person
134 sg:pub.10.1038/nature12822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042852549
135 https://doi.org/10.1038/nature12822
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature22394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085571294
138 https://doi.org/10.1038/nature22394
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ncomms12524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022801515
141 https://doi.org/10.1038/ncomms12524
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nmeth.3806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037497523
144 https://doi.org/10.1038/nmeth.3806
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmeth.4347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090326400
147 https://doi.org/10.1038/nmeth.4347
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/s12859-017-1757-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090851467
150 https://doi.org/10.1186/s12859-017-1757-y
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1006/jmbi.2000.3909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002147693
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1006/jmbi.2001.5133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013340814
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.bbrc.2007.11.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003846239
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cell.2016.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008337710
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jsb.2003.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007800965
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jsb.2012.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019988217
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jsb.2013.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034422328
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jsb.2013.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048109749
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jsb.2014.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031002456
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jsb.2016.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001976293
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.patcog.2016.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010506048
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.tibs.2014.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053316395
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.4982020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096889371
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/nar/gkv1126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042935912
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tcbb.2015.2415787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541413
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tpami.2017.2699184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085304410
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1146/annurev-bioeng-071516-044442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084228312
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1167/16.12.326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063405080
189 rdf:type schema:CreativeWork
190 https://doi.org/10.3389/fmolb.2018.00050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104373446
191 rdf:type schema:CreativeWork
192 https://doi.org/10.7554/elife.03080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032558561
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
195 schema:name High Performance Computer Research Center, Institute of Computing Technology Chinese Academy of Sciences, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China
196 University of Chinese Academy of Sciences, Beijing, China
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.418856.6 schema:alternateName Institute of Biophysics
199 schema:name Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
200 National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
201 University of Chinese Academy of Sciences, Beijing, China
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.424936.e schema:alternateName Institute Of Computing Technology
204 schema:name High Performance Computer Research Center, Institute of Computing Technology Chinese Academy of Sciences, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.45672.32 schema:alternateName King Abdullah University of Science and Technology
207 schema:name Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), 23955-6900, Thuwal, Saudi Arabia
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...