MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging – design, implementation and application on ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Charlotte Debus, Ralf Floca, Michael Ingrisch, Ina Kompan, Klaus Maier-Hein, Amir Abdollahi, Marco Nolden

ABSTRACT

BACKGROUND: Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)/computed tomography (CT), apparent diffusion coefficient calculations and intravoxel incoherent motion modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow. RESULTS: We present a framework for medical image fitting tasks that is included in the Medical Imaging Interaction Toolkit MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth. CONCLUSIONS: Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows. More... »

PAGES

31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2588-1

DOI

http://dx.doi.org/10.1186/s12859-018-2588-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111461151

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30651067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heidelberger Institut f\u00fcr Radioonkologie", 
          "id": "https://www.grid.ac/institutes/grid.488831.e", 
          "name": [
            "German Cancer Consortium (DKTK), Heidelberg, Germany", 
            "Department of Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany", 
            "Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany", 
            "National Center for Tumor Diseases (NCT), Heidelberg, Germany", 
            "Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Debus", 
        "givenName": "Charlotte", 
        "id": "sg:person.015145024407.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145024407.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany", 
            "Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Floca", 
        "givenName": "Ralf", 
        "id": "sg:person.0775451376.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775451376.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ingrisch", 
        "givenName": "Michael", 
        "id": "sg:person.0736605015.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736605015.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany", 
            "Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kompan", 
        "givenName": "Ina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany", 
            "Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany", 
            "Section Pattern Recognition, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier-Hein", 
        "givenName": "Klaus", 
        "id": "sg:person.01043060100.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043060100.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberger Institut f\u00fcr Radioonkologie", 
          "id": "https://www.grid.ac/institutes/grid.488831.e", 
          "name": [
            "German Cancer Consortium (DKTK), Heidelberg, Germany", 
            "Department of Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany", 
            "Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany", 
            "National Center for Tumor Diseases (NCT), Heidelberg, Germany", 
            "Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdollahi", 
        "givenName": "Amir", 
        "id": "sg:person.01357305274.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357305274.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nolden", 
        "givenName": "Marco", 
        "id": "sg:person.01125554103.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125554103.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.12122447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003906749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1970-0258249-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004777117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-012-9510-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007572511", 
          "https://doi.org/10.1007/s10278-012-9510-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/13.3.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007597686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6603515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008061600", 
          "https://doi.org/10.1038/sj.bjc.6603515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6603515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008061600", 
          "https://doi.org/10.1038/sj.bjc.6603515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-004-1014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008953897", 
          "https://doi.org/10.1007/s10278-004-1014-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-004-1014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008953897", 
          "https://doi.org/10.1007/s10278-004-1014-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7657-3_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013502222", 
          "https://doi.org/10.1007/978-1-4614-7657-3_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-4159.1977.tb10649.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016554520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410060502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017761252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4898202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017883688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31823bfc97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024938385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31823bfc97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024938385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025208498", 
          "https://doi.org/10.1038/nrn1119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025208498", 
          "https://doi.org/10.1038/nrn1119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027245371", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027245371", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1593/tlo.13838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027459393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030197281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2015.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030305528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-016-0109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313156", 
          "https://doi.org/10.1186/s12880-016-0109-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033562129", 
          "https://doi.org/10.1186/1471-2105-14-316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033562129", 
          "https://doi.org/10.1186/1471-2105-14-316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12688/f1000research.2-288.v1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036969556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199107000-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039176961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199107000-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039176961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042398774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-015-0062-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044014174", 
          "https://doi.org/10.1186/s12880-015-0062-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-015-0062-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044014174", 
          "https://doi.org/10.1186/s12880-015-0062-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012744482-6.50026-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046567689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-013-9315-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047041604", 
          "https://doi.org/10.1007/s10928-013-9315-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048246919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-013-0840-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050385053", 
          "https://doi.org/10.1007/s11548-013-0840-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051052601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucmedbio.2006.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051964767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052095593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/50/9/n02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/57/2/r1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059029425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/6.1.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059685636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/55166688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064569566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v044.i03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v044.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077126069", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpregu.1982.243.1.r1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082145763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083385287", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091106213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6560/aa8989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091435866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496634", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)/computed tomography (CT), apparent diffusion coefficient calculations and intravoxel incoherent motion modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow.\nRESULTS: We present a framework for medical image fitting tasks that is included in the Medical Imaging Interaction Toolkit MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth.\nCONCLUSIONS: Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-018-2588-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging \u2013 design, implementation and application on the example of DCE-MRI", 
    "pagination": "31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c3f4e1ce439fae1d72f587806981119d99e75ddda449be40810b4f141670e1cb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30651067"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2588-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111461151"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2588-1", 
      "https://app.dimensions.ai/details/publication/pub.1111461151"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100812_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-018-2588-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2588-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2588-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2588-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2588-1'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2588-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N571bd4cb25b443e082abd0d9989bc002
4 schema:citation sg:pub.10.1007/978-1-4614-7657-3_19
5 sg:pub.10.1007/s10278-004-1014-6
6 sg:pub.10.1007/s10278-012-9510-6
7 sg:pub.10.1007/s10928-013-9315-3
8 sg:pub.10.1007/s11548-013-0840-8
9 sg:pub.10.1038/nrn1119
10 sg:pub.10.1038/sj.bjc.6603515
11 sg:pub.10.1186/1471-2105-14-316
12 sg:pub.10.1186/s12880-015-0062-3
13 sg:pub.10.1186/s12880-016-0109-0
14 https://app.dimensions.ai/details/publication/pub.1027245371
15 https://app.dimensions.ai/details/publication/pub.1077126069
16 https://app.dimensions.ai/details/publication/pub.1083385287
17 https://app.dimensions.ai/details/publication/pub.1109496634
18 https://doi.org/10.1002/ana.410060502
19 https://doi.org/10.1002/jmri.24061
20 https://doi.org/10.1002/jmri.25101
21 https://doi.org/10.1002/jmri.25838
22 https://doi.org/10.1002/mrm.21066
23 https://doi.org/10.1016/b978-012744482-6.50026-0
24 https://doi.org/10.1016/j.ejrad.2010.02.017
25 https://doi.org/10.1016/j.jcmg.2015.11.005
26 https://doi.org/10.1016/j.nucmedbio.2006.01.002
27 https://doi.org/10.1088/0031-9155/50/9/n02
28 https://doi.org/10.1088/0031-9155/57/2/r1
29 https://doi.org/10.1088/1361-6560/aa8989
30 https://doi.org/10.1090/s0025-5718-1970-0258249-6
31 https://doi.org/10.1093/comjnl/13.3.317
32 https://doi.org/10.1093/imamat/6.1.76
33 https://doi.org/10.1097/00004728-199107000-00018
34 https://doi.org/10.1097/rli.0b013e31823bfc97
35 https://doi.org/10.1111/j.1471-4159.1977.tb10649.x
36 https://doi.org/10.1118/1.4898202
37 https://doi.org/10.1148/radiol.12122447
38 https://doi.org/10.1152/ajpregu.1982.243.1.r1
39 https://doi.org/10.1259/bjr/55166688
40 https://doi.org/10.12688/f1000research.2-288.v1
41 https://doi.org/10.1593/tlo.13838
42 https://doi.org/10.18637/jss.v044.i03
43 https://doi.org/10.18637/jss.v044.i05
44 https://doi.org/10.7717/peerj.909
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description BACKGROUND: Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)/computed tomography (CT), apparent diffusion coefficient calculations and intravoxel incoherent motion modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow. RESULTS: We present a framework for medical image fitting tasks that is included in the Medical Imaging Interaction Toolkit MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth. CONCLUSIONS: Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N5b9bd001d1894e8c8c4781e0ba157030
52 N6e13db6fded54bd78342100b8c2a503f
53 sg:journal.1023786
54 schema:name MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging – design, implementation and application on the example of DCE-MRI
55 schema:pagination 31
56 schema:productId N310c61db2e1c45c08a13dc3e2708819c
57 N652fa89d0bd44b65a6c19f21e5a363a8
58 N9241bb6493f947058ef4c001af340c3d
59 Nbd45c202088047feb76cf579862fec6e
60 Ne7e0d759363a48fdaca6594e013bba68
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111461151
62 https://doi.org/10.1186/s12859-018-2588-1
63 schema:sdDatePublished 2019-04-11T08:57
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N4dc91d3e896543c6aec72ae6482eee16
66 schema:url https://link.springer.com/10.1186%2Fs12859-018-2588-1
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N310c61db2e1c45c08a13dc3e2708819c schema:name doi
71 schema:value 10.1186/s12859-018-2588-1
72 rdf:type schema:PropertyValue
73 N4d6177e04e2d4736b2d157660b237759 rdf:first sg:person.0775451376.20
74 rdf:rest N7a8aef1b9f464213a6f9398ede04df25
75 N4dc91d3e896543c6aec72ae6482eee16 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N571bd4cb25b443e082abd0d9989bc002 rdf:first sg:person.015145024407.03
78 rdf:rest N4d6177e04e2d4736b2d157660b237759
79 N5b9bd001d1894e8c8c4781e0ba157030 schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N652fa89d0bd44b65a6c19f21e5a363a8 schema:name dimensions_id
82 schema:value pub.1111461151
83 rdf:type schema:PropertyValue
84 N6a213e3c73a6415c936e61b175ef8c6e schema:affiliation https://www.grid.ac/institutes/grid.7497.d
85 schema:familyName Kompan
86 schema:givenName Ina
87 rdf:type schema:Person
88 N6e13db6fded54bd78342100b8c2a503f schema:volumeNumber 20
89 rdf:type schema:PublicationVolume
90 N71c0fed1c7b34947b4451f0467db30f6 rdf:first N6a213e3c73a6415c936e61b175ef8c6e
91 rdf:rest Nf86f098928f74552a2936f568d51683b
92 N7a8aef1b9f464213a6f9398ede04df25 rdf:first sg:person.0736605015.67
93 rdf:rest N71c0fed1c7b34947b4451f0467db30f6
94 N806f786ae22a4509a41a1b344cc556e3 rdf:first sg:person.01125554103.58
95 rdf:rest rdf:nil
96 N8e980afb4c6e4c04af32e6b3f948778b rdf:first sg:person.01357305274.19
97 rdf:rest N806f786ae22a4509a41a1b344cc556e3
98 N9241bb6493f947058ef4c001af340c3d schema:name pubmed_id
99 schema:value 30651067
100 rdf:type schema:PropertyValue
101 Nbd45c202088047feb76cf579862fec6e schema:name nlm_unique_id
102 schema:value 100965194
103 rdf:type schema:PropertyValue
104 Ne7e0d759363a48fdaca6594e013bba68 schema:name readcube_id
105 schema:value c3f4e1ce439fae1d72f587806981119d99e75ddda449be40810b4f141670e1cb
106 rdf:type schema:PropertyValue
107 Nf86f098928f74552a2936f568d51683b rdf:first sg:person.01043060100.88
108 rdf:rest N8e980afb4c6e4c04af32e6b3f948778b
109 Nfb2ba3b50a3247b9b4265640a1100f74 schema:name Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
110 rdf:type schema:Organization
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:journal.1023786 schema:issn 1471-2105
118 schema:name BMC Bioinformatics
119 rdf:type schema:Periodical
120 sg:person.01043060100.88 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
121 schema:familyName Maier-Hein
122 schema:givenName Klaus
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043060100.88
124 rdf:type schema:Person
125 sg:person.01125554103.58 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
126 schema:familyName Nolden
127 schema:givenName Marco
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125554103.58
129 rdf:type schema:Person
130 sg:person.01357305274.19 schema:affiliation https://www.grid.ac/institutes/grid.488831.e
131 schema:familyName Abdollahi
132 schema:givenName Amir
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357305274.19
134 rdf:type schema:Person
135 sg:person.015145024407.03 schema:affiliation https://www.grid.ac/institutes/grid.488831.e
136 schema:familyName Debus
137 schema:givenName Charlotte
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145024407.03
139 rdf:type schema:Person
140 sg:person.0736605015.67 schema:affiliation Nfb2ba3b50a3247b9b4265640a1100f74
141 schema:familyName Ingrisch
142 schema:givenName Michael
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736605015.67
144 rdf:type schema:Person
145 sg:person.0775451376.20 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
146 schema:familyName Floca
147 schema:givenName Ralf
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775451376.20
149 rdf:type schema:Person
150 sg:pub.10.1007/978-1-4614-7657-3_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013502222
151 https://doi.org/10.1007/978-1-4614-7657-3_19
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s10278-004-1014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008953897
154 https://doi.org/10.1007/s10278-004-1014-6
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s10278-012-9510-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007572511
157 https://doi.org/10.1007/s10278-012-9510-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10928-013-9315-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047041604
160 https://doi.org/10.1007/s10928-013-9315-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11548-013-0840-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050385053
163 https://doi.org/10.1007/s11548-013-0840-8
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nrn1119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025208498
166 https://doi.org/10.1038/nrn1119
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/sj.bjc.6603515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008061600
169 https://doi.org/10.1038/sj.bjc.6603515
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2105-14-316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033562129
172 https://doi.org/10.1186/1471-2105-14-316
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/s12880-015-0062-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044014174
175 https://doi.org/10.1186/s12880-015-0062-3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/s12880-016-0109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031313156
178 https://doi.org/10.1186/s12880-016-0109-0
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1027245371 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1077126069 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1083385287 schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1109496634 schema:CreativeWork
184 https://doi.org/10.1002/ana.410060502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017761252
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/jmri.24061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048246919
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/jmri.25101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030197281
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/jmri.25838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091106213
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/mrm.21066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042398774
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/b978-012744482-6.50026-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046567689
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.ejrad.2010.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051052601
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jcmg.2015.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030305528
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.nucmedbio.2006.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051964767
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/0031-9155/50/9/n02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026001
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/0031-9155/57/2/r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029425
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/1361-6560/aa8989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091435866
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1090/s0025-5718-1970-0258249-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004777117
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/comjnl/13.3.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007597686
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/imamat/6.1.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059685636
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1097/00004728-199107000-00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039176961
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1097/rli.0b013e31823bfc97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024938385
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1471-4159.1977.tb10649.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016554520
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1118/1.4898202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017883688
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1148/radiol.12122447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003906749
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1152/ajpregu.1982.243.1.r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082145763
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1259/bjr/55166688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569566
227 rdf:type schema:CreativeWork
228 https://doi.org/10.12688/f1000research.2-288.v1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036969556
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1593/tlo.13838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027459393
231 rdf:type schema:CreativeWork
232 https://doi.org/10.18637/jss.v044.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672660
233 rdf:type schema:CreativeWork
234 https://doi.org/10.18637/jss.v044.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672662
235 rdf:type schema:CreativeWork
236 https://doi.org/10.7717/peerj.909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052095593
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.488831.e schema:alternateName Heidelberger Institut für Radioonkologie
239 schema:name Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
240 Department of Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
241 German Cancer Consortium (DKTK), Heidelberg, Germany
242 Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
243 National Center for Tumor Diseases (NCT), Heidelberg, Germany
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.5253.1 schema:alternateName University Hospital Heidelberg
246 schema:name Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany
247 Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
248 Section Pattern Recognition, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.7497.d schema:alternateName German Cancer Research Center
251 schema:name Division of Medical Image Computing, German Cancer Research Center DKFZ, Heidelberg, Germany
252 Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...