CoMetGeNe: mining conserved neighborhood patterns in metabolic and genomic contexts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Alexandra Zaharia, Bernard Labedan, Christine Froidevaux, Alain Denise

ABSTRACT

BACKGROUND: In systems biology, there is an acute need for integrative approaches in heterogeneous network mining in order to exploit the continuous flux of genomic data. Simultaneous analysis of the metabolic pathways and genomic context of a given species leads to the identification of patterns consisting in reaction chains catalyzed by products of neighboring genes. Similar such patterns across several species can reveal their mode of conservation throughout the tree of life. RESULTS: We present CoMetGeNe (COnserved METabolic and GEnomic NEighborhoods), a novel method that identifies metabolic and genomic patterns consisting in maximal trails of reactions being catalyzed by products of neighboring genes. Patterns determined by CoMetGeNe in one species are subsequently employed in order to reflect their degree of conservation across multiple prokaryotic species. These interspecies comparisons help to improve genome annotation and can reveal putative alternative metabolic routes as well as unexpected gene ordering occurrences. CONCLUSIONS: CoMetGeNe is an exploratory tool at both the genomic and the metabolic levels, leading to insights into the conservation of functionally related clusters of neighboring enzyme-coding genes. The open-source CoMetGeNe pipeline is freely available at https://cometgene.lri.fr . More... »

PAGES

19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2542-2

DOI

http://dx.doi.org/10.1186/s12859-018-2542-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111320360

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30630411


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire de Recherche en Informatique (LRI), CNRS, Universit\u00e9 Paris-Sud, Universit\u00e9 Paris-Saclay, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaharia", 
        "givenName": "Alexandra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire de Recherche en Informatique (LRI), CNRS, Universit\u00e9 Paris-Sud, Universit\u00e9 Paris-Saclay, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Labedan", 
        "givenName": "Bernard", 
        "id": "sg:person.01361243341.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361243341.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire de Recherche en Informatique (LRI), CNRS, Universit\u00e9 Paris-Sud, Universit\u00e9 Paris-Saclay, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froidevaux", 
        "givenName": "Christine", 
        "id": "sg:person.01037627551.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037627551.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Integrative Biology of the Cell", 
          "id": "https://www.grid.ac/institutes/grid.462411.4", 
          "name": [
            "Laboratoire de Recherche en Informatique (LRI), CNRS, Universit\u00e9 Paris-Sud, Universit\u00e9 Paris-Saclay, 91405, Orsay, France", 
            "Institut de Biologie Int\u00e9grative de la Cellule (I2BC), CEA, CNRS, Universit\u00e9 Paris-Sud, Universit\u00e9 Paris-Saclay, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denise", 
        "givenName": "Alain", 
        "id": "sg:person.01053053010.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053053010.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1478-3975/3/3/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000197762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001868665", 
          "https://doi.org/10.1038/nrmicro2578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.20.4021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001927650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003710142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003710142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-s1-s38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005755094", 
          "https://doi.org/10.1186/1471-2105-11-s1-s38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649211", 
          "https://doi.org/10.1038/nrg1319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649211", 
          "https://doi.org/10.1038/nrg1319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649211", 
          "https://doi.org/10.1038/nrg1319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30850-5_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008774470", 
          "https://doi.org/10.1007/978-3-642-30850-5_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008850435", 
          "https://doi.org/10.1038/ncomms13091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22616-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009925141", 
          "https://doi.org/10.1007/978-3-642-22616-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22616-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009925141", 
          "https://doi.org/10.1007/978-3-642-22616-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2013.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011493082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/a8040810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012130916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(88)90199-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014948212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-5-r39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018464557", 
          "https://doi.org/10.1186/gb-2006-7-5-r39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.r111.254714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018644589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.17.4.697-728.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018871220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.72.2.1558-1568.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019088985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csbj.2015.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019250454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1997.4091773.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020521706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1997.4091773.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020521706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0510258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020707260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbt039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021529418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00140-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022017672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/emboj.2011.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027982428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029045446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030468328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030468328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10482-012-9739-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031759913", 
          "https://doi.org/10.1007/s10482-012-9739-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10482-012-9739-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031759913", 
          "https://doi.org/10.1007/s10482-012-9739-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034040244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci3005379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036023685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.10.2212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036943197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037888144", 
          "https://doi.org/10.1038/ncomms8116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0071947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040193568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00546-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040463555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2197/ipsjdc.3.736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041526416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0806627105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042725107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046030547", 
          "https://doi.org/10.1186/1471-2105-12-193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1046161756", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-4529-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046161756", 
          "https://doi.org/10.1007/978-1-4614-4529-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-4529-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046161756", 
          "https://doi.org/10.1007/978-1-4614-4529-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02441-2_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046946568", 
          "https://doi.org/10.1007/978-3-642-02441-2_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02441-2_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046946568", 
          "https://doi.org/10.1007/978-3-642-02441-2_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051510804", 
          "https://doi.org/10.1038/35036627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051510804", 
          "https://doi.org/10.1038/35036627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052472156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-syb.2010.0070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.200602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060407424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082399300", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2017.00202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083801994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.biochem.7b00249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085866205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gky197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101707609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: In systems biology, there is an acute need for integrative approaches in heterogeneous network mining in order to exploit the continuous flux of genomic data. Simultaneous analysis of the metabolic pathways and genomic context of a given species leads to the identification of patterns consisting in reaction chains catalyzed by products of neighboring genes. Similar such patterns across several species can reveal their mode of conservation throughout the tree of life.\nRESULTS: We present CoMetGeNe (COnserved METabolic and GEnomic NEighborhoods), a novel method that identifies metabolic and genomic patterns consisting in maximal trails of reactions being catalyzed by products of neighboring genes. Patterns determined by CoMetGeNe in one species are subsequently employed in order to reflect their degree of conservation across multiple prokaryotic species. These interspecies comparisons help to improve genome annotation and can reveal putative alternative metabolic routes as well as unexpected gene ordering occurrences.\nCONCLUSIONS: CoMetGeNe is an exploratory tool at both the genomic and the metabolic levels, leading to insights into the conservation of functionally related clusters of neighboring enzyme-coding genes. The open-source CoMetGeNe pipeline is freely available at https://cometgene.lri.fr .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-018-2542-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "CoMetGeNe: mining conserved neighborhood patterns in metabolic and genomic contexts", 
    "pagination": "19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "620c65d894c81f2277395403f6b6529bcb92884062b7dda31602497dcdd7f8bf"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30630411"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2542-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111320360"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2542-2", 
      "https://app.dimensions.ai/details/publication/pub.1111320360"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000320_0000000320/records_101387_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-018-2542-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2542-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2542-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2542-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2542-2'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2542-2 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Naf3a7db2f7ac410f91670f72fa334beb
4 schema:citation sg:pub.10.1007/978-1-4614-4529-6
5 sg:pub.10.1007/978-3-642-02441-2_23
6 sg:pub.10.1007/978-3-642-22616-8_22
7 sg:pub.10.1007/978-3-642-30850-5_17
8 sg:pub.10.1007/s10482-012-9739-6
9 sg:pub.10.1038/35036627
10 sg:pub.10.1038/ncomms13091
11 sg:pub.10.1038/ncomms8116
12 sg:pub.10.1038/nrg1319
13 sg:pub.10.1038/nrmicro2578
14 sg:pub.10.1186/1471-2105-11-s1-s38
15 sg:pub.10.1186/1471-2105-12-193
16 sg:pub.10.1186/gb-2006-7-5-r39
17 https://app.dimensions.ai/details/publication/pub.1046161756
18 https://app.dimensions.ai/details/publication/pub.1082399300
19 https://doi.org/10.1016/0022-2836(88)90199-4
20 https://doi.org/10.1016/j.celrep.2015.12.085
21 https://doi.org/10.1016/j.csbj.2015.06.002
22 https://doi.org/10.1016/j.febslet.2013.06.026
23 https://doi.org/10.1016/s0022-2836(02)00140-7
24 https://doi.org/10.1016/s0022-2836(02)00546-6
25 https://doi.org/10.1021/acs.biochem.7b00249
26 https://doi.org/10.1021/ci3005379
27 https://doi.org/10.1038/emboj.2011.61
28 https://doi.org/10.1046/j.1365-2958.1997.4091773.x
29 https://doi.org/10.1049/iet-syb.2010.0070
30 https://doi.org/10.1073/pnas.0510258103
31 https://doi.org/10.1073/pnas.0806627105
32 https://doi.org/10.1074/jbc.r111.254714
33 https://doi.org/10.1088/1478-3975/3/3/003
34 https://doi.org/10.1093/bib/bbt039
35 https://doi.org/10.1093/bioinformatics/bti711
36 https://doi.org/10.1093/bioinformatics/btt202
37 https://doi.org/10.1093/nar/25.17.3389
38 https://doi.org/10.1093/nar/28.20.4021
39 https://doi.org/10.1093/nar/30.10.2212
40 https://doi.org/10.1093/nar/gku1003
41 https://doi.org/10.1093/nar/gkw1092
42 https://doi.org/10.1093/nar/gky197
43 https://doi.org/10.1101/gr.200602
44 https://doi.org/10.1128/aem.72.2.1558-1568.2006
45 https://doi.org/10.1128/cmr.17.4.697-728.2004
46 https://doi.org/10.1371/journal.pone.0071947
47 https://doi.org/10.2197/ipsjdc.3.736
48 https://doi.org/10.3389/fmicb.2017.00202
49 https://doi.org/10.3390/a8040810
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description BACKGROUND: In systems biology, there is an acute need for integrative approaches in heterogeneous network mining in order to exploit the continuous flux of genomic data. Simultaneous analysis of the metabolic pathways and genomic context of a given species leads to the identification of patterns consisting in reaction chains catalyzed by products of neighboring genes. Similar such patterns across several species can reveal their mode of conservation throughout the tree of life. RESULTS: We present CoMetGeNe (COnserved METabolic and GEnomic NEighborhoods), a novel method that identifies metabolic and genomic patterns consisting in maximal trails of reactions being catalyzed by products of neighboring genes. Patterns determined by CoMetGeNe in one species are subsequently employed in order to reflect their degree of conservation across multiple prokaryotic species. These interspecies comparisons help to improve genome annotation and can reveal putative alternative metabolic routes as well as unexpected gene ordering occurrences. CONCLUSIONS: CoMetGeNe is an exploratory tool at both the genomic and the metabolic levels, leading to insights into the conservation of functionally related clusters of neighboring enzyme-coding genes. The open-source CoMetGeNe pipeline is freely available at https://cometgene.lri.fr .
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N49592646ce0b4046bfbb4c1b5f1a1758
57 Ne7117cbaaf594b7ab8e31d1b94973d55
58 sg:journal.1023786
59 schema:name CoMetGeNe: mining conserved neighborhood patterns in metabolic and genomic contexts
60 schema:pagination 19
61 schema:productId N3c8534a5da244b9eb1a11d06c3d17dea
62 N3cbc9ef6c5a447b3af7ba391506e6abc
63 Nd893d6621be64004b9d35051511d7d8e
64 Nf2466e71b9134a748af59a2213b08a1c
65 Nf7138c726ddf418b98f3674e6a591797
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111320360
67 https://doi.org/10.1186/s12859-018-2542-2
68 schema:sdDatePublished 2019-04-11T08:41
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Ncfbddd16967040faa98644651d60017c
71 schema:url https://link.springer.com/10.1186%2Fs12859-018-2542-2
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N11dfcd4599024986a4f2a81cdd51fe54 rdf:first sg:person.01037627551.92
76 rdf:rest N934f15a3a54644c491b851fd766a4ce4
77 N3c8534a5da244b9eb1a11d06c3d17dea schema:name pubmed_id
78 schema:value 30630411
79 rdf:type schema:PropertyValue
80 N3cbc9ef6c5a447b3af7ba391506e6abc schema:name dimensions_id
81 schema:value pub.1111320360
82 rdf:type schema:PropertyValue
83 N49592646ce0b4046bfbb4c1b5f1a1758 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N6c55a4d78f06460b97b2df05fc8cae98 rdf:first sg:person.01361243341.13
86 rdf:rest N11dfcd4599024986a4f2a81cdd51fe54
87 N769cbfd86d904112bb42bf52695c71cc schema:affiliation https://www.grid.ac/institutes/grid.4444.0
88 schema:familyName Zaharia
89 schema:givenName Alexandra
90 rdf:type schema:Person
91 N934f15a3a54644c491b851fd766a4ce4 rdf:first sg:person.01053053010.72
92 rdf:rest rdf:nil
93 Naf3a7db2f7ac410f91670f72fa334beb rdf:first N769cbfd86d904112bb42bf52695c71cc
94 rdf:rest N6c55a4d78f06460b97b2df05fc8cae98
95 Ncfbddd16967040faa98644651d60017c schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nd893d6621be64004b9d35051511d7d8e schema:name nlm_unique_id
98 schema:value 100965194
99 rdf:type schema:PropertyValue
100 Ne7117cbaaf594b7ab8e31d1b94973d55 schema:volumeNumber 20
101 rdf:type schema:PublicationVolume
102 Nf2466e71b9134a748af59a2213b08a1c schema:name readcube_id
103 schema:value 620c65d894c81f2277395403f6b6529bcb92884062b7dda31602497dcdd7f8bf
104 rdf:type schema:PropertyValue
105 Nf7138c726ddf418b98f3674e6a591797 schema:name doi
106 schema:value 10.1186/s12859-018-2542-2
107 rdf:type schema:PropertyValue
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
112 schema:name Genetics
113 rdf:type schema:DefinedTerm
114 sg:journal.1023786 schema:issn 1471-2105
115 schema:name BMC Bioinformatics
116 rdf:type schema:Periodical
117 sg:person.01037627551.92 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
118 schema:familyName Froidevaux
119 schema:givenName Christine
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037627551.92
121 rdf:type schema:Person
122 sg:person.01053053010.72 schema:affiliation https://www.grid.ac/institutes/grid.462411.4
123 schema:familyName Denise
124 schema:givenName Alain
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053053010.72
126 rdf:type schema:Person
127 sg:person.01361243341.13 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
128 schema:familyName Labedan
129 schema:givenName Bernard
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361243341.13
131 rdf:type schema:Person
132 sg:pub.10.1007/978-1-4614-4529-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046161756
133 https://doi.org/10.1007/978-1-4614-4529-6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/978-3-642-02441-2_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046946568
136 https://doi.org/10.1007/978-3-642-02441-2_23
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-642-22616-8_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009925141
139 https://doi.org/10.1007/978-3-642-22616-8_22
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-642-30850-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008774470
142 https://doi.org/10.1007/978-3-642-30850-5_17
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10482-012-9739-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031759913
145 https://doi.org/10.1007/s10482-012-9739-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/35036627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510804
148 https://doi.org/10.1038/35036627
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/ncomms13091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008850435
151 https://doi.org/10.1038/ncomms13091
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/ncomms8116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037888144
154 https://doi.org/10.1038/ncomms8116
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nrg1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007649211
157 https://doi.org/10.1038/nrg1319
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nrmicro2578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001868665
160 https://doi.org/10.1038/nrmicro2578
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/1471-2105-11-s1-s38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005755094
163 https://doi.org/10.1186/1471-2105-11-s1-s38
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/1471-2105-12-193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046030547
166 https://doi.org/10.1186/1471-2105-12-193
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/gb-2006-7-5-r39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018464557
169 https://doi.org/10.1186/gb-2006-7-5-r39
170 rdf:type schema:CreativeWork
171 https://app.dimensions.ai/details/publication/pub.1046161756 schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1082399300 schema:CreativeWork
173 https://doi.org/10.1016/0022-2836(88)90199-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014948212
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.celrep.2015.12.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052472156
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.csbj.2015.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019250454
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.febslet.2013.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011493082
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0022-2836(02)00140-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022017672
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0022-2836(02)00546-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040463555
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acs.biochem.7b00249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085866205
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/ci3005379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036023685
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1038/emboj.2011.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027982428
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1046/j.1365-2958.1997.4091773.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020521706
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1049/iet-syb.2010.0070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056838997
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1073/pnas.0510258103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020707260
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1073/pnas.0806627105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042725107
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1074/jbc.r111.254714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018644589
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1088/1478-3975/3/3/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000197762
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bib/bbt039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021529418
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/bti711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030468328
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/btt202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003710142
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/nar/28.20.4021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001927650
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/nar/30.10.2212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036943197
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gku1003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029045446
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gkw1092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034040244
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gky197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101707609
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1101/gr.200602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060407424
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1128/aem.72.2.1558-1568.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019088985
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1128/cmr.17.4.697-728.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018871220
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pone.0071947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040193568
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2197/ipsjdc.3.736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041526416
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3389/fmicb.2017.00202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083801994
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3390/a8040810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012130916
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
236 schema:name Laboratoire de Recherche en Informatique (LRI), CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.462411.4 schema:alternateName Institute of Integrative Biology of the Cell
239 schema:name Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
240 Laboratoire de Recherche en Informatique (LRI), CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...