Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Lacramioara Dranca, Lopez de Abetxuko Ruiz de Mendarozketa, Alfredo Goñi, Arantza Illarramendi, Irene Navalpotro Gomez, Manuel Delgado Alvarado, María Cruz Rodríguez-Oroz

ABSTRACT

BACKGROUND: Parkinson's Disease (PD) is a chronic neurodegenerative disease associated with motor problems such as gait impairment. Different systems based on 3D cameras, accelerometers or gyroscopes have been used in related works in order to study gait disturbances in PD. Kinect Ⓡ has also been used to build these kinds of systems, but contradictory results have been reported: some works conclude that Kinect does not provide an accurate method of measuring gait kinematics variables, but others, on the contrary, report good accuracy results. METHODS: In this work, we have built a Kinect-based system that can distinguish between different PD stages, and have performed a clinical study with 30 patients suffering from PD belonging to three groups: early PD patients without axial impairment, more evolved PD patients with higher gait impairment but without Freezing of Gait (FoG), and patients with advanced PD and FoG. Those patients were recorded by two Kinect devices when they were walking in a hospital corridor. The datasets obtained from the Kinect were preprocessed, 115 features identified, some methods were applied to select the relevant features (correlation based feature selection, information gain, and consistency subset evaluation), and different classification methods (decision trees, Bayesian networks, neural networks and K-nearest neighbours classifiers) were evaluated with the goal of finding the most accurate method for PD stage classification. RESULTS: The classifier that provided the best results is a particular case of a Bayesian Network classifier (similar to a Naïve Bayesian classifier) built from a set of 7 relevant features selected by the correlation-based on feature selection method. The accuracy obtained for that classifier using 10-fold cross validation is 93.40%. The relevant features are related to left shin angles, left humerus angles, frontal and lateral bents, left forearm angles and the number of steps during spin. CONCLUSIONS: In this paper, it is shown that using Kinect is adequate to build a inexpensive and comfortable system that classifies PD into three different stages related to FoG. Compared to the results of previous works, the obtained accuracy (93.40%) can be considered high. The relevant features for the classifier are: a) movement and position of the left arm, b) trunk position for slightly displaced walking sequences, and c) left shin angle, for straight walking sequences. However, we have obtained a better accuracy (96.23%) for a classifier that only uses features extracted from slightly displaced walking steps and spin walking steps. Finally, the obtained set of relevant features may lead to new rehabilitation therapies for PD patients with gait problems. More... »

PAGES

471

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2488-4

DOI

http://dx.doi.org/10.1186/s12859-018-2488-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110518121

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30526473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gait", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parkinson Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centro Universitario de la Defensa", 
          "id": "https://www.grid.ac/institutes/grid.467120.6", 
          "name": [
            "Centro Universitario de la Defensa, ctra. Huesca, Zaragoza, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dranca", 
        "givenName": "Lacramioara", 
        "id": "sg:person.01311250734.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311250734.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Basque Country", 
          "id": "https://www.grid.ac/institutes/grid.11480.3c", 
          "name": [
            "University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, 20018, Donostia-San Sebastian, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Abetxuko Ruiz de Mendarozketa", 
        "givenName": "Lopez", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Basque Country", 
          "id": "https://www.grid.ac/institutes/grid.11480.3c", 
          "name": [
            "University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, 20018, Donostia-San Sebastian, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Go\u00f1i", 
        "givenName": "Alfredo", 
        "id": "sg:person.01175022334.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175022334.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Basque Country", 
          "id": "https://www.grid.ac/institutes/grid.11480.3c", 
          "name": [
            "University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, 20018, Donostia-San Sebastian, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Illarramendi", 
        "givenName": "Arantza", 
        "id": "sg:person.016677402070.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016677402070.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Donostia Unibertsitate Ospitalea", 
          "id": "https://www.grid.ac/institutes/grid.414651.3", 
          "name": [
            "Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014, Donostia-San Sebastian, Spain", 
            "CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain", 
            "Donostia University Hospital, Donostia-San Sebastian, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Navalpotro Gomez", 
        "givenName": "Irene", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Investigaci\u00f3n Marqu\u00e9s de Valdecilla", 
          "id": "https://www.grid.ac/institutes/grid.484299.a", 
          "name": [
            "Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014, Donostia-San Sebastian, Spain", 
            "CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain", 
            "Neurology Department, University Hospital Sierrallana. Neuroimaging Unit, Valdecilla Biomedical Research Institute, IDIVAL, Santander, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delgado Alvarado", 
        "givenName": "Manuel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinica Universidad de Navarra", 
          "id": "https://www.grid.ac/institutes/grid.411730.0", 
          "name": [
            "Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014, Donostia-San Sebastian, Spain", 
            "CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain", 
            "Ikerbasque, Basque Foundation for Science, Donostia-San Sebastian, Spain", 
            "BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain", 
            "Department of Neurology University of Navarra Clinic, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodr\u00edguez-Oroz", 
        "givenName": "Mar\u00eda Cruz", 
        "id": "sg:person.01303220355.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303220355.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12938-015-0092-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003897576", 
          "https://doi.org/10.1186/s12938-015-0092-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12938-015-0092-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003897576", 
          "https://doi.org/10.1186/s12938-015-0092-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.17.5.427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004075938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awt049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009356085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012768905", 
          "https://doi.org/10.1038/nrn1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012768905", 
          "https://doi.org/10.1038/nrn1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gaitpost.2013.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014215497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ridd.2011.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015133607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12984-016-0136-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015328399", 
          "https://doi.org/10.1186/s12984-016-0136-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci42642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017752678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci42642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017752678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gaitpost.2014.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019371151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.51.6.745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021617363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.21912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024682978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.21912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024682978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1353-8020(99)00062-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024747520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.26110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026423390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.26110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026423390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2838944.2838958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027000500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50032-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027065619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-6362(03)00068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027519422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-6362(03)00068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027519422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028526411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s16020194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029682690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awt172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030083889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10916-015-0289-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035850009", 
          "https://doi.org/10.1007/s10916-015-0289-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.55.3.181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038938753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gaitpost.2009.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039418746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(11)70143-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039768762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2013.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040164182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0052602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040528973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-11-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045366297", 
          "https://doi.org/10.1186/1743-0003-11-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0073547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047102863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.parkreldis.2013.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047181210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.20216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047473554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e7b688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e7b688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e7b688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.42.2.333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064370556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.56.12.1712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064379353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.56.12.1712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064379353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.56.12.1712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064379353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me13-01-0109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074794105", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074880273", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077808661", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6090521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078502678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078681895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078681895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2014.6944628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079027034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2015.7318601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079205106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2015.7319969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079206557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082942587", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2017.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084757190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-67582-4_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091686214", 
          "https://doi.org/10.1007/978-3-319-67582-4_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-67582-4_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091686214", 
          "https://doi.org/10.1007/978-3-319-67582-4_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2017.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092350015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icbme.2015.7404173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095490522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2026705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103068135"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Parkinson's Disease (PD) is a chronic neurodegenerative disease associated with motor problems such as gait impairment. Different systems based on 3D cameras, accelerometers or gyroscopes have been used in related works in order to study gait disturbances in PD. Kinect \u24c7 has also been used to build these kinds of systems, but contradictory results have been reported: some works conclude that Kinect does not provide an accurate method of measuring gait kinematics variables, but others, on the contrary, report good accuracy results.\nMETHODS: In this work, we have built a Kinect-based system that can distinguish between different PD stages, and have performed a clinical study with 30 patients suffering from PD belonging to three groups: early PD patients without axial impairment, more evolved PD patients with higher gait impairment but without Freezing of Gait (FoG), and patients with advanced PD and FoG. Those patients were recorded by two Kinect devices when they were walking in a hospital corridor. The datasets obtained from the Kinect were preprocessed, 115 features identified, some methods were applied to select the relevant features (correlation based feature selection, information gain, and consistency subset evaluation), and different classification methods (decision trees, Bayesian networks, neural networks and K-nearest neighbours classifiers) were evaluated with the goal of finding the most accurate method for PD stage classification.\nRESULTS: The classifier that provided the best results is a particular case of a Bayesian Network classifier (similar to a Na\u00efve Bayesian classifier) built from a set of 7 relevant features selected by the correlation-based on feature selection method. The accuracy obtained for that classifier using 10-fold cross validation is 93.40%. The relevant features are related to left shin angles, left humerus angles, frontal and lateral bents, left forearm angles and the number of steps during spin.\nCONCLUSIONS: In this paper, it is shown that using Kinect is adequate to build a inexpensive and comfortable system that classifies PD into three different stages related to FoG. Compared to the results of previous works, the obtained accuracy (93.40%) can be considered high. The relevant features for the classifier are: a) movement and position of the left arm, b) trunk position for slightly displaced walking sequences, and c) left shin angle, for straight walking sequences. However, we have obtained a better accuracy (96.23%) for a classifier that only uses features extracted from slightly displaced walking steps and spin walking steps. Finally, the obtained set of relevant features may lead to new rehabilitation therapies for PD patients with gait problems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-018-2488-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Using Kinect to classify Parkinson\u2019s disease stages related to severity of gait impairment", 
    "pagination": "471", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93188b95449685b06001548577bab9f5199de77b23b61c5c0b5c3a384b310940"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30526473"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2488-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110518121"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2488-4", 
      "https://app.dimensions.ai/details/publication/pub.1110518121"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113661_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-018-2488-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2488-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2488-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2488-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2488-4'


 

This table displays all metadata directly associated to this object as RDF triples.

313 TRIPLES      21 PREDICATES      87 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2488-4 schema:about N02f58989d927452f8e46f9288dd55b6f
2 N0e52de2fec79415abd7e53752014664e
3 N1cccad249d4a473988843fd881849533
4 N1d1957fef3c3480cb80cb0a2ae66557d
5 N22927f0d3d80414fad2e9f5541d53d69
6 N44222e6ed3e24f97911c791ccce8d857
7 N7576e14eeca54a7481d6787ce0a0b719
8 N93275eae935e46488c75c7d1a93cab3c
9 Na3393c73cabd4e9497082d690425fc08
10 Neb343ff716a440388d0a5967e350518d
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author Nf7564357ec4549af899fd3206003eaed
14 schema:citation sg:pub.10.1007/978-3-319-67582-4_29
15 sg:pub.10.1007/s10916-015-0289-0
16 sg:pub.10.1038/nrn1849
17 sg:pub.10.1186/1743-0003-11-60
18 sg:pub.10.1186/s12938-015-0092-7
19 sg:pub.10.1186/s12984-016-0136-7
20 https://app.dimensions.ai/details/publication/pub.1074794105
21 https://app.dimensions.ai/details/publication/pub.1074880273
22 https://app.dimensions.ai/details/publication/pub.1077808661
23 https://app.dimensions.ai/details/publication/pub.1082942587
24 https://doi.org/10.1002/mds.20216
25 https://doi.org/10.1002/mds.21912
26 https://doi.org/10.1002/mds.26110
27 https://doi.org/10.1016/b978-1-55860-377-6.50032-3
28 https://doi.org/10.1016/j.cmpb.2013.10.014
29 https://doi.org/10.1016/j.gaitpost.2009.11.012
30 https://doi.org/10.1016/j.gaitpost.2013.03.029
31 https://doi.org/10.1016/j.gaitpost.2014.01.008
32 https://doi.org/10.1016/j.medengphy.2017.03.007
33 https://doi.org/10.1016/j.medengphy.2017.10.004
34 https://doi.org/10.1016/j.parkreldis.2013.06.011
35 https://doi.org/10.1016/j.ridd.2011.07.002
36 https://doi.org/10.1016/s0966-6362(03)00068-7
37 https://doi.org/10.1016/s1353-8020(99)00062-0
38 https://doi.org/10.1016/s1474-4422(11)70143-0
39 https://doi.org/10.1093/brain/awt049
40 https://doi.org/10.1093/brain/awt172
41 https://doi.org/10.1109/embc.2012.6346151
42 https://doi.org/10.1109/embc.2012.6346340
43 https://doi.org/10.1109/embc.2014.6944628
44 https://doi.org/10.1109/embc.2015.7318601
45 https://doi.org/10.1109/embc.2015.7319969
46 https://doi.org/10.1109/icbme.2015.7404173
47 https://doi.org/10.1109/iembs.2011.6090521
48 https://doi.org/10.1136/jnnp.51.6.745
49 https://doi.org/10.1136/jnnp.55.3.181
50 https://doi.org/10.1145/1656274.1656278
51 https://doi.org/10.1145/2838944.2838958
52 https://doi.org/10.1172/jci42642
53 https://doi.org/10.1212/wnl.0b013e3181e7b688
54 https://doi.org/10.1212/wnl.17.5.427
55 https://doi.org/10.1212/wnl.42.2.333
56 https://doi.org/10.1212/wnl.56.12.1712
57 https://doi.org/10.1371/journal.pone.0052602
58 https://doi.org/10.1371/journal.pone.0073547
59 https://doi.org/10.2307/2026705
60 https://doi.org/10.3390/s16020194
61 https://doi.org/10.3414/me13-01-0109
62 schema:datePublished 2018-12
63 schema:datePublishedReg 2018-12-01
64 schema:description BACKGROUND: Parkinson's Disease (PD) is a chronic neurodegenerative disease associated with motor problems such as gait impairment. Different systems based on 3D cameras, accelerometers or gyroscopes have been used in related works in order to study gait disturbances in PD. Kinect Ⓡ has also been used to build these kinds of systems, but contradictory results have been reported: some works conclude that Kinect does not provide an accurate method of measuring gait kinematics variables, but others, on the contrary, report good accuracy results. METHODS: In this work, we have built a Kinect-based system that can distinguish between different PD stages, and have performed a clinical study with 30 patients suffering from PD belonging to three groups: early PD patients without axial impairment, more evolved PD patients with higher gait impairment but without Freezing of Gait (FoG), and patients with advanced PD and FoG. Those patients were recorded by two Kinect devices when they were walking in a hospital corridor. The datasets obtained from the Kinect were preprocessed, 115 features identified, some methods were applied to select the relevant features (correlation based feature selection, information gain, and consistency subset evaluation), and different classification methods (decision trees, Bayesian networks, neural networks and K-nearest neighbours classifiers) were evaluated with the goal of finding the most accurate method for PD stage classification. RESULTS: The classifier that provided the best results is a particular case of a Bayesian Network classifier (similar to a Naïve Bayesian classifier) built from a set of 7 relevant features selected by the correlation-based on feature selection method. The accuracy obtained for that classifier using 10-fold cross validation is 93.40%. The relevant features are related to left shin angles, left humerus angles, frontal and lateral bents, left forearm angles and the number of steps during spin. CONCLUSIONS: In this paper, it is shown that using Kinect is adequate to build a inexpensive and comfortable system that classifies PD into three different stages related to FoG. Compared to the results of previous works, the obtained accuracy (93.40%) can be considered high. The relevant features for the classifier are: a) movement and position of the left arm, b) trunk position for slightly displaced walking sequences, and c) left shin angle, for straight walking sequences. However, we have obtained a better accuracy (96.23%) for a classifier that only uses features extracted from slightly displaced walking steps and spin walking steps. Finally, the obtained set of relevant features may lead to new rehabilitation therapies for PD patients with gait problems.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree true
68 schema:isPartOf N30a29187895f45459468c90ea7ebcda3
69 N4a54237af0cb4d069cd8bbf1fca5477c
70 sg:journal.1023786
71 schema:name Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment
72 schema:pagination 471
73 schema:productId N09eb6763d6e24fc593c699474cb0c3cc
74 N1a0ddabfaaaa4fddb62fce606e4c22c5
75 N5423545a609f4649b178b1fa97c6d26a
76 N89f1f17af54b47feae2f0f8b0b7cce66
77 Nd03632bfba8e48e9a9bb53488c3ca8e3
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110518121
79 https://doi.org/10.1186/s12859-018-2488-4
80 schema:sdDatePublished 2019-04-11T10:34
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nddda814905814b88902a9741affa519f
83 schema:url https://link.springer.com/10.1186%2Fs12859-018-2488-4
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N02f58989d927452f8e46f9288dd55b6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Parkinson Disease
89 rdf:type schema:DefinedTerm
90 N09eb6763d6e24fc593c699474cb0c3cc schema:name pubmed_id
91 schema:value 30526473
92 rdf:type schema:PropertyValue
93 N0d2d8c266902467aba3983a00451d91d rdf:first Nf79e941f7325486299f5d1205e70f482
94 rdf:rest N3725b3ee5491441a8eac2fa74afb8aa7
95 N0e52de2fec79415abd7e53752014664e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Software
97 rdf:type schema:DefinedTerm
98 N1a0ddabfaaaa4fddb62fce606e4c22c5 schema:name doi
99 schema:value 10.1186/s12859-018-2488-4
100 rdf:type schema:PropertyValue
101 N1cccad249d4a473988843fd881849533 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Humans
103 rdf:type schema:DefinedTerm
104 N1d1957fef3c3480cb80cb0a2ae66557d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Female
106 rdf:type schema:DefinedTerm
107 N22927f0d3d80414fad2e9f5541d53d69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Aged
109 rdf:type schema:DefinedTerm
110 N22d766873faf4c8496ba3fea6d9edb6d rdf:first sg:person.016677402070.32
111 rdf:rest N6f424de02fa14907aa2cfae966cc0a0b
112 N30a29187895f45459468c90ea7ebcda3 schema:volumeNumber 19
113 rdf:type schema:PublicationVolume
114 N3725b3ee5491441a8eac2fa74afb8aa7 rdf:first sg:person.01175022334.92
115 rdf:rest N22d766873faf4c8496ba3fea6d9edb6d
116 N44222e6ed3e24f97911c791ccce8d857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Algorithms
118 rdf:type schema:DefinedTerm
119 N481cca76829e42219340e548f4f770e1 schema:affiliation https://www.grid.ac/institutes/grid.414651.3
120 schema:familyName Navalpotro Gomez
121 schema:givenName Irene
122 rdf:type schema:Person
123 N4a54237af0cb4d069cd8bbf1fca5477c schema:issueNumber 1
124 rdf:type schema:PublicationIssue
125 N5423545a609f4649b178b1fa97c6d26a schema:name dimensions_id
126 schema:value pub.1110518121
127 rdf:type schema:PropertyValue
128 N6f424de02fa14907aa2cfae966cc0a0b rdf:first N481cca76829e42219340e548f4f770e1
129 rdf:rest N8f4d758993304c40aaad0c07664b83f6
130 N7576e14eeca54a7481d6787ce0a0b719 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Bayes Theorem
132 rdf:type schema:DefinedTerm
133 N8293b51b94b14e5586a1369c8a88c927 schema:affiliation https://www.grid.ac/institutes/grid.484299.a
134 schema:familyName Delgado Alvarado
135 schema:givenName Manuel
136 rdf:type schema:Person
137 N89f1f17af54b47feae2f0f8b0b7cce66 schema:name nlm_unique_id
138 schema:value 100965194
139 rdf:type schema:PropertyValue
140 N8f4d758993304c40aaad0c07664b83f6 rdf:first N8293b51b94b14e5586a1369c8a88c927
141 rdf:rest N912f7284bd1546448b67f5e3c94a1dda
142 N912f7284bd1546448b67f5e3c94a1dda rdf:first sg:person.01303220355.32
143 rdf:rest rdf:nil
144 N93275eae935e46488c75c7d1a93cab3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Male
146 rdf:type schema:DefinedTerm
147 Na3393c73cabd4e9497082d690425fc08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Gait
149 rdf:type schema:DefinedTerm
150 Nd03632bfba8e48e9a9bb53488c3ca8e3 schema:name readcube_id
151 schema:value 93188b95449685b06001548577bab9f5199de77b23b61c5c0b5c3a384b310940
152 rdf:type schema:PropertyValue
153 Nddda814905814b88902a9741affa519f schema:name Springer Nature - SN SciGraph project
154 rdf:type schema:Organization
155 Neb343ff716a440388d0a5967e350518d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Probability
157 rdf:type schema:DefinedTerm
158 Nf7564357ec4549af899fd3206003eaed rdf:first sg:person.01311250734.45
159 rdf:rest N0d2d8c266902467aba3983a00451d91d
160 Nf79e941f7325486299f5d1205e70f482 schema:affiliation https://www.grid.ac/institutes/grid.11480.3c
161 schema:familyName de Abetxuko Ruiz de Mendarozketa
162 schema:givenName Lopez
163 rdf:type schema:Person
164 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
165 schema:name Information and Computing Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
168 schema:name Artificial Intelligence and Image Processing
169 rdf:type schema:DefinedTerm
170 sg:journal.1023786 schema:issn 1471-2105
171 schema:name BMC Bioinformatics
172 rdf:type schema:Periodical
173 sg:person.01175022334.92 schema:affiliation https://www.grid.ac/institutes/grid.11480.3c
174 schema:familyName Goñi
175 schema:givenName Alfredo
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175022334.92
177 rdf:type schema:Person
178 sg:person.01303220355.32 schema:affiliation https://www.grid.ac/institutes/grid.411730.0
179 schema:familyName Rodríguez-Oroz
180 schema:givenName María Cruz
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303220355.32
182 rdf:type schema:Person
183 sg:person.01311250734.45 schema:affiliation https://www.grid.ac/institutes/grid.467120.6
184 schema:familyName Dranca
185 schema:givenName Lacramioara
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311250734.45
187 rdf:type schema:Person
188 sg:person.016677402070.32 schema:affiliation https://www.grid.ac/institutes/grid.11480.3c
189 schema:familyName Illarramendi
190 schema:givenName Arantza
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016677402070.32
192 rdf:type schema:Person
193 sg:pub.10.1007/978-3-319-67582-4_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091686214
194 https://doi.org/10.1007/978-3-319-67582-4_29
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s10916-015-0289-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035850009
197 https://doi.org/10.1007/s10916-015-0289-0
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nrn1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012768905
200 https://doi.org/10.1038/nrn1849
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1743-0003-11-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045366297
203 https://doi.org/10.1186/1743-0003-11-60
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/s12938-015-0092-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003897576
206 https://doi.org/10.1186/s12938-015-0092-7
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/s12984-016-0136-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015328399
209 https://doi.org/10.1186/s12984-016-0136-7
210 rdf:type schema:CreativeWork
211 https://app.dimensions.ai/details/publication/pub.1074794105 schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1074880273 schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1077808661 schema:CreativeWork
214 https://app.dimensions.ai/details/publication/pub.1082942587 schema:CreativeWork
215 https://doi.org/10.1002/mds.20216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047473554
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/mds.21912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024682978
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/mds.26110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423390
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/b978-1-55860-377-6.50032-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027065619
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.cmpb.2013.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040164182
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.gaitpost.2009.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039418746
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.gaitpost.2013.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014215497
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.gaitpost.2014.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019371151
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.medengphy.2017.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084757190
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.medengphy.2017.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092350015
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.parkreldis.2013.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047181210
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.ridd.2011.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015133607
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0966-6362(03)00068-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027519422
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/s1353-8020(99)00062-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024747520
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/s1474-4422(11)70143-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039768762
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/brain/awt049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009356085
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/brain/awt172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030083889
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1109/embc.2012.6346151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078681895
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1109/embc.2012.6346340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078682099
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1109/embc.2014.6944628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079027034
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/embc.2015.7318601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079205106
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/embc.2015.7319969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079206557
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/icbme.2015.7404173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095490522
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/iembs.2011.6090521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078502678
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1136/jnnp.51.6.745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021617363
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1136/jnnp.55.3.181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038938753
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1145/2838944.2838958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027000500
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1172/jci42642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017752678
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1212/wnl.0b013e3181e7b688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064355390
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1212/wnl.17.5.427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004075938
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1212/wnl.42.2.333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064370556
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1212/wnl.56.12.1712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064379353
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1371/journal.pone.0052602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040528973
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1371/journal.pone.0073547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047102863
284 rdf:type schema:CreativeWork
285 https://doi.org/10.2307/2026705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103068135
286 rdf:type schema:CreativeWork
287 https://doi.org/10.3390/s16020194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029682690
288 rdf:type schema:CreativeWork
289 https://doi.org/10.3414/me13-01-0109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312230
290 rdf:type schema:CreativeWork
291 https://www.grid.ac/institutes/grid.11480.3c schema:alternateName University of the Basque Country
292 schema:name University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, 20018, Donostia-San Sebastian, Spain
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.411730.0 schema:alternateName Clinica Universidad de Navarra
295 schema:name BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain
296 CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
297 Department of Neurology University of Navarra Clinic, Pamplona, Spain
298 Ikerbasque, Basque Foundation for Science, Donostia-San Sebastian, Spain
299 Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014, Donostia-San Sebastian, Spain
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.414651.3 schema:alternateName Donostia Unibertsitate Ospitalea
302 schema:name CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
303 Donostia University Hospital, Donostia-San Sebastian, Spain
304 Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014, Donostia-San Sebastian, Spain
305 rdf:type schema:Organization
306 https://www.grid.ac/institutes/grid.467120.6 schema:alternateName Centro Universitario de la Defensa
307 schema:name Centro Universitario de la Defensa, ctra. Huesca, Zaragoza, Spain
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.484299.a schema:alternateName Instituto de Investigación Marqués de Valdecilla
310 schema:name CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
311 Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, 20014, Donostia-San Sebastian, Spain
312 Neurology Department, University Hospital Sierrallana. Neuroimaging Unit, Valdecilla Biomedical Research Institute, IDIVAL, Santander, Spain
313 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...