Learning protein binding affinity using privileged information View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Wajid Arshad Abbasi, Amina Asif, Asa Ben-Hur, Fayyaz ul Amir Afsar Minhas

ABSTRACT

BACKGROUND: Determining protein-protein interactions and their binding affinity are important in understanding cellular biological processes, discovery and design of novel therapeutics, protein engineering, and mutagenesis studies. Due to the time and effort required in wet lab experiments, computational prediction of binding affinity from sequence or structure is an important area of research. Structure-based methods, though more accurate than sequence-based techniques, are limited in their applicability due to limited availability of protein structure data. RESULTS: In this study, we propose a novel machine learning method for predicting binding affinity that uses protein 3D structure as privileged information at training time while expecting only protein sequence information during testing. Using the method, which is based on the framework of learning using privileged information (LUPI), we have achieved improved performance over corresponding sequence-based binding affinity prediction methods that do not have access to privileged information during training. Our experiments show that with the proposed framework which uses structure only during training, it is possible to achieve classification performance comparable to that which is obtained using structure-based features. Evaluation on an independent test set shows improved performance over the PPA-Pred2 method as well. CONCLUSIONS: The proposed method outperforms several baseline learners and a state-of-the-art binding affinity predictor not only in cross-validation, but also on an additional validation dataset, demonstrating the utility of the LUPI framework for problems that would benefit from classification using structure-based features. The implementation of LUPI developed for this work is expected to be useful in other areas of bioinformatics as well. More... »

PAGES

425

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2448-z

DOI

http://dx.doi.org/10.1186/s12859-018-2448-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109914807

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30442086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Biomedical Informatics Research Laboratory (BIRL), Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), 45650, Nilore, ISL, Pakistan", 
            "Information Technology Center (ITC), University of Azad Jammu & Kashmir, 13100, Muzaffarabad, Azad Kashmir, Pakistan", 
            "Department of Computer Science, Colorado State University (CSU), 80523, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbasi", 
        "givenName": "Wajid Arshad", 
        "id": "sg:person.0733501367.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733501367.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Engineering and Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.420112.4", 
          "name": [
            "Biomedical Informatics Research Laboratory (BIRL), Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), 45650, Nilore, ISL, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asif", 
        "givenName": "Amina", 
        "id": "sg:person.07725755705.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725755705.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Computer Science, Colorado State University (CSU), 80523, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben-Hur", 
        "givenName": "Asa", 
        "id": "sg:person.01242755504.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Engineering and Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.420112.4", 
          "name": [
            "Biomedical Informatics Research Laboratory (BIRL), Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), 45650, Nilore, ISL, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minhas", 
        "givenName": "Fayyaz ul Amir Afsar", 
        "id": "sg:person.01151200143.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151200143.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-10-150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000192825", 
          "https://doi.org/10.1186/1471-2105-10-150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000192825", 
          "https://doi.org/10.1186/1471-2105-10-150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms17020144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000274772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0804-1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006061272", 
          "https://doi.org/10.1038/nbt0804-1035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0804-1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006061272", 
          "https://doi.org/10.1038/nbt0804-1035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0510145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007865852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0510145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007865852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.08.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012270588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.08.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012270588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1412159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013196071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013554534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0029104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014364520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-5-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542047", 
          "https://doi.org/10.1186/1758-2946-5-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017955180", 
          "https://doi.org/10.1038/srep00334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019888633", 
          "https://doi.org/10.1186/s12859-016-1035-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019888633", 
          "https://doi.org/10.1186/s12859-016-1035-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2939672.2939785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021899069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-013-0679-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028169001", 
          "https://doi.org/10.1007/s10115-013-0679-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013203451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030645893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13015-015-0033-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030761391", 
          "https://doi.org/10.1186/s13015-015-0033-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13015-015-0033-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030761391", 
          "https://doi.org/10.1186/s13015-015-0033-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/rrs-120037896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032979226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-16-s18-s14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034360965", 
          "https://doi.org/10.1186/1471-2105-16-s18-s14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-011-1101-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036056911", 
          "https://doi.org/10.1007/s00726-011-1101-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.2230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036761972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038468455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039448563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045189929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045510848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143844.1143874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046546824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcms.1225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046690188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047237853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1998.1843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047717537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047719884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.07454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048122294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-010-0420-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050541291", 
          "https://doi.org/10.1007/s10107-010-0420-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050873429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052716214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms161125952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053123471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(03)00149-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053151207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219720016500116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063005322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1386207319666160927111347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069175301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077525191", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1533-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084249919", 
          "https://doi.org/10.1186/s12859-017-1533-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1533-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084249919", 
          "https://doi.org/10.1186/s12859-017-1533-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/0929867324666170426095015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085309298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.25330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085940009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bty374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103818184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bty816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107109468"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Determining protein-protein interactions and their binding affinity are important in understanding cellular biological processes, discovery and design of novel therapeutics, protein engineering, and mutagenesis studies. Due to the time and effort required in wet lab experiments, computational prediction of binding affinity from sequence or structure is an important area of research. Structure-based methods, though more accurate than sequence-based techniques, are limited in their applicability due to limited availability of protein structure data.\nRESULTS: In this study, we propose a novel machine learning method for predicting binding affinity that uses protein 3D structure as privileged information at training time while expecting only protein sequence information during testing. Using the method, which is based on the framework of learning using privileged information (LUPI), we have achieved improved performance over corresponding sequence-based binding affinity prediction methods that do not have access to privileged information during training. Our experiments show that with the proposed framework which uses structure only during training, it is possible to achieve classification performance comparable to that which is obtained using structure-based features. Evaluation on an independent test set shows improved performance over the PPA-Pred2 method as well.\nCONCLUSIONS: The proposed method outperforms several baseline learners and a state-of-the-art binding affinity predictor not only in cross-validation, but also on an additional validation dataset, demonstrating the utility of the LUPI framework for problems that would benefit from classification using structure-based features. The implementation of LUPI developed for this work is expected to be useful in other areas of bioinformatics as well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-018-2448-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5539772", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Learning protein binding affinity using privileged information", 
    "pagination": "425", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dafe39ddd485be668a26aaefdb98574f42446dcd07f9d657c5fd54d8e9efb905"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30442086"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2448-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109914807"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2448-z", 
      "https://app.dimensions.ai/details/publication/pub.1109914807"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000273_0000000273/records_94004_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-018-2448-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2448-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2448-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2448-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2448-z'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2448-z schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N1dd342fe26904cba82f12d045f912405
4 schema:citation sg:pub.10.1007/bf00994018
5 sg:pub.10.1007/s00726-011-1101-1
6 sg:pub.10.1007/s10107-010-0420-4
7 sg:pub.10.1007/s10115-013-0679-x
8 sg:pub.10.1023/a:1010933404324
9 sg:pub.10.1038/nbt0804-1035
10 sg:pub.10.1038/srep00334
11 sg:pub.10.1186/1471-2105-10-150
12 sg:pub.10.1186/1471-2105-16-s18-s14
13 sg:pub.10.1186/1758-2946-5-41
14 sg:pub.10.1186/s12859-016-1035-4
15 sg:pub.10.1186/s12859-017-1533-z
16 sg:pub.10.1186/s13015-015-0033-9
17 https://app.dimensions.ai/details/publication/pub.1077525191
18 https://doi.org/10.1002/pro.2230
19 https://doi.org/10.1002/pro.580
20 https://doi.org/10.1002/prot.10085
21 https://doi.org/10.1002/prot.22830
22 https://doi.org/10.1002/prot.24564
23 https://doi.org/10.1002/prot.25330
24 https://doi.org/10.1002/wcms.1225
25 https://doi.org/10.1006/jmbi.1998.1843
26 https://doi.org/10.1016/j.bbrc.2003.08.093
27 https://doi.org/10.1016/s0092-8674(03)00149-1
28 https://doi.org/10.1042/bj0510145
29 https://doi.org/10.1081/rrs-120037896
30 https://doi.org/10.1093/bioinformatics/btr513
31 https://doi.org/10.1093/bioinformatics/btu580
32 https://doi.org/10.1093/bioinformatics/btu682
33 https://doi.org/10.1093/bioinformatics/btu821
34 https://doi.org/10.1093/bioinformatics/bty374
35 https://doi.org/10.1093/bioinformatics/bty816
36 https://doi.org/10.1142/s0219720016500116
37 https://doi.org/10.1145/1143844.1143874
38 https://doi.org/10.1145/2939672.2939785
39 https://doi.org/10.1214/aos/1013203451
40 https://doi.org/10.1371/journal.pone.0001926
41 https://doi.org/10.1371/journal.pone.0029104
42 https://doi.org/10.2174/0929867324666170426095015
43 https://doi.org/10.2174/1386207319666160927111347
44 https://doi.org/10.2307/1412159
45 https://doi.org/10.3390/ijms161125952
46 https://doi.org/10.3390/ijms17020144
47 https://doi.org/10.7554/elife.07454
48 schema:datePublished 2018-12
49 schema:datePublishedReg 2018-12-01
50 schema:description BACKGROUND: Determining protein-protein interactions and their binding affinity are important in understanding cellular biological processes, discovery and design of novel therapeutics, protein engineering, and mutagenesis studies. Due to the time and effort required in wet lab experiments, computational prediction of binding affinity from sequence or structure is an important area of research. Structure-based methods, though more accurate than sequence-based techniques, are limited in their applicability due to limited availability of protein structure data. RESULTS: In this study, we propose a novel machine learning method for predicting binding affinity that uses protein 3D structure as privileged information at training time while expecting only protein sequence information during testing. Using the method, which is based on the framework of learning using privileged information (LUPI), we have achieved improved performance over corresponding sequence-based binding affinity prediction methods that do not have access to privileged information during training. Our experiments show that with the proposed framework which uses structure only during training, it is possible to achieve classification performance comparable to that which is obtained using structure-based features. Evaluation on an independent test set shows improved performance over the PPA-Pred2 method as well. CONCLUSIONS: The proposed method outperforms several baseline learners and a state-of-the-art binding affinity predictor not only in cross-validation, but also on an additional validation dataset, demonstrating the utility of the LUPI framework for problems that would benefit from classification using structure-based features. The implementation of LUPI developed for this work is expected to be useful in other areas of bioinformatics as well.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N2743a714f1324b699800bd1f1be55e58
55 N6c0a64dbd48a49aba97b1b22d0a63926
56 sg:journal.1023786
57 schema:name Learning protein binding affinity using privileged information
58 schema:pagination 425
59 schema:productId N62e7485167214204bb9ae76f42c60e6c
60 Nad841b7c97a64795aa76e59aaa72b131
61 Nceca85ed16414907b6e4134eb09a4778
62 Nd1479674f0a44871b4a098fa522b840a
63 Neeae361ae3a64e4f9862ebf7eae229d6
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109914807
65 https://doi.org/10.1186/s12859-018-2448-z
66 schema:sdDatePublished 2019-04-11T08:13
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N213744b628054ab6975e5b1820e5d0eb
69 schema:url https://link.springer.com/10.1186%2Fs12859-018-2448-z
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N1d0580ca9bc946ccb99b2a1231398cdc rdf:first sg:person.01151200143.56
74 rdf:rest rdf:nil
75 N1dd342fe26904cba82f12d045f912405 rdf:first sg:person.0733501367.90
76 rdf:rest Nbb972a1eadd04ff0b85486106dd149a8
77 N213744b628054ab6975e5b1820e5d0eb schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N2743a714f1324b699800bd1f1be55e58 schema:volumeNumber 19
80 rdf:type schema:PublicationVolume
81 N61d7ac9bca864da1965ebaa014bc743e rdf:first sg:person.01242755504.30
82 rdf:rest N1d0580ca9bc946ccb99b2a1231398cdc
83 N62e7485167214204bb9ae76f42c60e6c schema:name nlm_unique_id
84 schema:value 100965194
85 rdf:type schema:PropertyValue
86 N6c0a64dbd48a49aba97b1b22d0a63926 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Nad841b7c97a64795aa76e59aaa72b131 schema:name dimensions_id
89 schema:value pub.1109914807
90 rdf:type schema:PropertyValue
91 Nbb972a1eadd04ff0b85486106dd149a8 rdf:first sg:person.07725755705.99
92 rdf:rest N61d7ac9bca864da1965ebaa014bc743e
93 Nceca85ed16414907b6e4134eb09a4778 schema:name pubmed_id
94 schema:value 30442086
95 rdf:type schema:PropertyValue
96 Nd1479674f0a44871b4a098fa522b840a schema:name doi
97 schema:value 10.1186/s12859-018-2448-z
98 rdf:type schema:PropertyValue
99 Neeae361ae3a64e4f9862ebf7eae229d6 schema:name readcube_id
100 schema:value dafe39ddd485be668a26aaefdb98574f42446dcd07f9d657c5fd54d8e9efb905
101 rdf:type schema:PropertyValue
102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
103 schema:name Biological Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
106 schema:name Biochemistry and Cell Biology
107 rdf:type schema:DefinedTerm
108 sg:grant.5539772 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-018-2448-z
109 rdf:type schema:MonetaryGrant
110 sg:journal.1023786 schema:issn 1471-2105
111 schema:name BMC Bioinformatics
112 rdf:type schema:Periodical
113 sg:person.01151200143.56 schema:affiliation https://www.grid.ac/institutes/grid.420112.4
114 schema:familyName Minhas
115 schema:givenName Fayyaz ul Amir Afsar
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151200143.56
117 rdf:type schema:Person
118 sg:person.01242755504.30 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
119 schema:familyName Ben-Hur
120 schema:givenName Asa
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30
122 rdf:type schema:Person
123 sg:person.0733501367.90 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
124 schema:familyName Abbasi
125 schema:givenName Wajid Arshad
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733501367.90
127 rdf:type schema:Person
128 sg:person.07725755705.99 schema:affiliation https://www.grid.ac/institutes/grid.420112.4
129 schema:familyName Asif
130 schema:givenName Amina
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725755705.99
132 rdf:type schema:Person
133 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
134 https://doi.org/10.1007/bf00994018
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00726-011-1101-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036056911
137 https://doi.org/10.1007/s00726-011-1101-1
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10107-010-0420-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050541291
140 https://doi.org/10.1007/s10107-010-0420-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10115-013-0679-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028169001
143 https://doi.org/10.1007/s10115-013-0679-x
144 rdf:type schema:CreativeWork
145 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
146 https://doi.org/10.1023/a:1010933404324
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nbt0804-1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006061272
149 https://doi.org/10.1038/nbt0804-1035
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep00334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017955180
152 https://doi.org/10.1038/srep00334
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-10-150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000192825
155 https://doi.org/10.1186/1471-2105-10-150
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1471-2105-16-s18-s14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034360965
158 https://doi.org/10.1186/1471-2105-16-s18-s14
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1758-2946-5-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014542047
161 https://doi.org/10.1186/1758-2946-5-41
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/s12859-016-1035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019888633
164 https://doi.org/10.1186/s12859-016-1035-4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/s12859-017-1533-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249919
167 https://doi.org/10.1186/s12859-017-1533-z
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/s13015-015-0033-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030761391
170 https://doi.org/10.1186/s13015-015-0033-9
171 rdf:type schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1077525191 schema:CreativeWork
173 https://doi.org/10.1002/pro.2230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036761972
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/pro.580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045189929
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/prot.10085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045510848
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/prot.22830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052716214
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/prot.24564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047719884
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/prot.25330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085940009
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/wcms.1225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046690188
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1006/jmbi.1998.1843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047717537
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.bbrc.2003.08.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012270588
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0092-8674(03)00149-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053151207
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1042/bj0510145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007865852
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1081/rrs-120037896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032979226
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/btr513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013554534
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/btu580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047237853
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/btu682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050873429
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/btu821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039448563
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/bty374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103818184
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/bty816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107109468
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1142/s0219720016500116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063005322
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1145/1143844.1143874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046546824
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1145/2939672.2939785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021899069
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1214/aos/1013203451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030645893
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pone.0001926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038468455
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0029104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014364520
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2174/0929867324666170426095015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085309298
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2174/1386207319666160927111347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069175301
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2307/1412159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013196071
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3390/ijms161125952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053123471
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3390/ijms17020144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000274772
230 rdf:type schema:CreativeWork
231 https://doi.org/10.7554/elife.07454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048122294
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.420112.4 schema:alternateName Pakistan Institute of Engineering and Applied Sciences
234 schema:name Biomedical Informatics Research Laboratory (BIRL), Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), 45650, Nilore, ISL, Pakistan
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
237 schema:name Biomedical Informatics Research Laboratory (BIRL), Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), 45650, Nilore, ISL, Pakistan
238 Department of Computer Science, Colorado State University (CSU), 80523, Fort Collins, CO, USA
239 Information Technology Center (ITC), University of Azad Jammu & Kashmir, 13100, Muzaffarabad, Azad Kashmir, Pakistan
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...