CEDAR OnDemand: a browser extension to generate ontology-based scientific metadata View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Syed Ahmad Chan Bukhari, Marcos Martínez-Romero, Martin J. O’ Connor, Attila L. Egyedi, Debra Willrett, John Graybeal, Mark A. Musen, Kei-Hoi Cheung, Steven H. Kleinstein

ABSTRACT

BACKGROUND: Public biomedical data repositories often provide web-based interfaces to collect experimental metadata. However, these interfaces typically reflect the ad hoc metadata specification practices of the associated repositories, leading to a lack of standardization in the collected metadata. This lack of standardization limits the ability of the source datasets to be broadly discovered, reused, and integrated with other datasets. To increase reuse, discoverability, and reproducibility of the described experiments, datasets should be appropriately annotated by using agreed-upon terms, ideally from ontologies or other controlled term sources. RESULTS: This work presents "CEDAR OnDemand", a browser extension powered by the NCBO (National Center for Biomedical Ontology) BioPortal that enables users to seamlessly enter ontology-based metadata through existing web forms native to individual repositories. CEDAR OnDemand analyzes the web page contents to identify the text input fields and associate them with relevant ontologies which are recommended automatically based upon input fields' labels (using the NCBO ontology recommender) and a pre-defined list of ontologies. These field-specific ontologies are used for controlling metadata entry. CEDAR OnDemand works for any web form designed in the HTML format. We demonstrate how CEDAR OnDemand works through the NCBI (National Center for Biotechnology Information) BioSample web-based metadata entry. CONCLUSION: CEDAR OnDemand helps lower the barrier of incorporating ontologies into standardized metadata entry for public data repositories. CEDAR OnDemand is available freely on the Google Chrome store https://chrome.google.com/webstore/search/CEDAROnDemand. More... »

PAGES

268

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2247-6

DOI

http://dx.doi.org/10.1186/s12859-018-2247-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105626862

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30012108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bukhari", 
        "givenName": "Syed Ahmad Chan", 
        "id": "sg:person.011256344060.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256344060.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez-Romero", 
        "givenName": "Marcos", 
        "id": "sg:person.0601034116.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601034116.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019 Connor", 
        "givenName": "Martin J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egyedi", 
        "givenName": "Attila L.", 
        "id": "sg:person.012540511315.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012540511315.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willrett", 
        "givenName": "Debra", 
        "id": "sg:person.01203116144.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203116144.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graybeal", 
        "givenName": "John", 
        "id": "sg:person.011473101167.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473101167.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musen", 
        "givenName": "Mark A.", 
        "id": "sg:person.01356117464.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356117464.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA", 
            "Department of Emergency Medicine and Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Kei-Hoi", 
        "id": "sg:person.01007571514.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007571514.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale School of Medicine, New Haven, CT, USA", 
            "Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleinstein", 
        "givenName": "Steven H.", 
        "id": "sg:person.01214444501.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214444501.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkr1178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001860160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.4056/sigs.147362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001957823", 
          "https://doi.org/10.4056/sigs.147362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-92673-3_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002789316", 
          "https://doi.org/10.1007/978-3-540-92673-3_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-92673-3_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002789316", 
          "https://doi.org/10.1007/978-3-540-92673-3_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2016.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005603549", 
          "https://doi.org/10.1038/sdata.2016.18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2016.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005603549", 
          "https://doi.org/10.1038/sdata.2016.18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010962830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012078987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1100/tsw.2009.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015893731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-1-r5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016188100", 
          "https://doi.org/10.1186/gb-2012-13-1-r5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001312", 
          "https://doi.org/10.1038/nbt1346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028735402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11527770_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028930186", 
          "https://doi.org/10.1007/11527770_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11527770_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028930186", 
          "https://doi.org/10.1007/11527770_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-s9-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031462905", 
          "https://doi.org/10.1186/1471-2105-8-s9-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4842-1775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032366269", 
          "https://doi.org/10.1007/978-1-4842-1775-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033063848", 
          "https://doi.org/10.1186/1471-2105-12-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034250918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2041-1480-4-s1-s8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036578321", 
          "https://doi.org/10.1186/2041-1480-4-s1-s8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040530060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045165208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045387827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2041-1480-5-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046713170", 
          "https://doi.org/10.1186/2041-1480-5-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2041-1480-4-s1-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048470672", 
          "https://doi.org/10.1186/2041-1480-4-s1-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jamia/ocv048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059743930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2005.330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061387443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mis.2006.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061405926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074680452", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13007-017-0159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083914015", 
          "https://doi.org/10.1186/s13007-017-0159-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13007-017-0159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083914015", 
          "https://doi.org/10.1186/s13007-017-0159-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13326-017-0128-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085913245", 
          "https://doi.org/10.1186/s13326-017-0128-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13326-017-0128-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085913245", 
          "https://doi.org/10.1186/s13326-017-0128-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/ijca2017914938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090772687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2017.01418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092476288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni.3873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092708815", 
          "https://doi.org/10.1038/ni.3873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni.3873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092708815", 
          "https://doi.org/10.1038/ni.3873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898717693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556578"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Public biomedical data repositories often provide web-based interfaces to collect experimental metadata. However, these interfaces typically reflect the ad hoc metadata specification practices of the associated repositories, leading to a lack of standardization in the collected metadata. This lack of standardization limits the ability of the source datasets to be broadly discovered, reused, and integrated with other datasets. To increase reuse, discoverability, and reproducibility of the described experiments, datasets should be appropriately annotated by using agreed-upon terms, ideally from ontologies or other controlled term sources.\nRESULTS: This work presents \"CEDAR OnDemand\", a browser extension powered by the NCBO (National Center for Biomedical Ontology) BioPortal that enables users to seamlessly enter ontology-based metadata through existing web forms native to individual repositories. CEDAR OnDemand analyzes the web page contents to identify the text input fields and associate them with relevant ontologies which are recommended automatically based upon input fields' labels (using the NCBO ontology recommender) and a pre-defined list of ontologies. These field-specific ontologies are used for controlling metadata entry. CEDAR OnDemand works for any web form designed in the HTML format. We demonstrate how CEDAR OnDemand works through the NCBI (National Center for Biotechnology Information) BioSample web-based metadata entry.\nCONCLUSION: CEDAR OnDemand helps lower the barrier of incorporating ontologies into standardized metadata entry for public data repositories. CEDAR OnDemand is available freely on the Google Chrome store https://chrome.google.com/webstore/search/CEDAROnDemand.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-018-2247-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3860226", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "CEDAR OnDemand: a browser extension to generate ontology-based scientific metadata", 
    "pagination": "268", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c7d804e8da2113185b51810a3178f9ee169a397bf5274436cf9517fafab6a0db"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30012108"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2247-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105626862"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2247-6", 
      "https://app.dimensions.ai/details/publication/pub.1105626862"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53010_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-018-2247-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2247-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2247-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2247-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2247-6'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2247-6 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ndf35fa08490140d9b963546eeb6d85c8
4 schema:citation sg:pub.10.1007/11527770_30
5 sg:pub.10.1007/978-1-4842-1775-7
6 sg:pub.10.1007/978-3-540-92673-3_25
7 sg:pub.10.1038/nbt1346
8 sg:pub.10.1038/ni.3873
9 sg:pub.10.1038/sdata.2016.18
10 sg:pub.10.1186/1471-2105-12-6
11 sg:pub.10.1186/1471-2105-8-s9-s1
12 sg:pub.10.1186/2041-1480-4-s1-s6
13 sg:pub.10.1186/2041-1480-4-s1-s8
14 sg:pub.10.1186/2041-1480-5-37
15 sg:pub.10.1186/gb-2012-13-1-r5
16 sg:pub.10.1186/s13007-017-0159-5
17 sg:pub.10.1186/s13326-017-0128-y
18 sg:pub.10.4056/sigs.147362
19 https://app.dimensions.ai/details/publication/pub.1074680452
20 https://doi.org/10.1093/bioinformatics/btt113
21 https://doi.org/10.1093/bioinformatics/btw331
22 https://doi.org/10.1093/jamia/ocv048
23 https://doi.org/10.1093/nar/gkh036
24 https://doi.org/10.1093/nar/gkm791
25 https://doi.org/10.1093/nar/gkp440
26 https://doi.org/10.1093/nar/gkr1163
27 https://doi.org/10.1093/nar/gkr1178
28 https://doi.org/10.1093/nar/gkr972
29 https://doi.org/10.1100/tsw.2009.57
30 https://doi.org/10.1109/mc.2005.330
31 https://doi.org/10.1109/mis.2006.62
32 https://doi.org/10.1137/1.9780898717693
33 https://doi.org/10.3389/fimmu.2017.01418
34 https://doi.org/10.5120/ijca2017914938
35 schema:datePublished 2018-12
36 schema:datePublishedReg 2018-12-01
37 schema:description BACKGROUND: Public biomedical data repositories often provide web-based interfaces to collect experimental metadata. However, these interfaces typically reflect the ad hoc metadata specification practices of the associated repositories, leading to a lack of standardization in the collected metadata. This lack of standardization limits the ability of the source datasets to be broadly discovered, reused, and integrated with other datasets. To increase reuse, discoverability, and reproducibility of the described experiments, datasets should be appropriately annotated by using agreed-upon terms, ideally from ontologies or other controlled term sources. RESULTS: This work presents "CEDAR OnDemand", a browser extension powered by the NCBO (National Center for Biomedical Ontology) BioPortal that enables users to seamlessly enter ontology-based metadata through existing web forms native to individual repositories. CEDAR OnDemand analyzes the web page contents to identify the text input fields and associate them with relevant ontologies which are recommended automatically based upon input fields' labels (using the NCBO ontology recommender) and a pre-defined list of ontologies. These field-specific ontologies are used for controlling metadata entry. CEDAR OnDemand works for any web form designed in the HTML format. We demonstrate how CEDAR OnDemand works through the NCBI (National Center for Biotechnology Information) BioSample web-based metadata entry. CONCLUSION: CEDAR OnDemand helps lower the barrier of incorporating ontologies into standardized metadata entry for public data repositories. CEDAR OnDemand is available freely on the Google Chrome store https://chrome.google.com/webstore/search/CEDAROnDemand.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N079157cd8b524735b07db239574b0ebd
42 N6b05094d7e9b4ab79d940f6024a1cdd8
43 sg:journal.1023786
44 schema:name CEDAR OnDemand: a browser extension to generate ontology-based scientific metadata
45 schema:pagination 268
46 schema:productId N70fea344d8fe458e9b4d7200be34c20e
47 Na4d781e0a7ca4e85975b09174172a86e
48 Nae7c64a959ef47d695bb291c47a2ea8a
49 Nbfc347a195f74e52906a13303cd189dc
50 Nedf4eb912d724762a591bed4744e1e07
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105626862
52 https://doi.org/10.1186/s12859-018-2247-6
53 schema:sdDatePublished 2019-04-11T11:24
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N8622f0395c7c4e6aa87decf2462edfa6
56 schema:url https://link.springer.com/10.1186%2Fs12859-018-2247-6
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N079157cd8b524735b07db239574b0ebd schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N4408233a2f524dafae9e7daad828d28d rdf:first sg:person.01007571514.24
63 rdf:rest N79da62b21e6646a1a531d9dd91b5bb6b
64 N4995d90f9a8d4820b6f44f98881e5cdf schema:affiliation https://www.grid.ac/institutes/grid.168010.e
65 schema:familyName O’ Connor
66 schema:givenName Martin J.
67 rdf:type schema:Person
68 N5a0e22ef0ab14f9ab4be6e1d8e62deda rdf:first sg:person.0601034116.04
69 rdf:rest Nf2f7fa1f858b463abc99d217c6a2213b
70 N6b05094d7e9b4ab79d940f6024a1cdd8 schema:volumeNumber 19
71 rdf:type schema:PublicationVolume
72 N6d2f1625acee4d6790e1d696dabd31e9 rdf:first sg:person.01203116144.45
73 rdf:rest N83b39cc598ed4e6dafc51de77a242eef
74 N70fea344d8fe458e9b4d7200be34c20e schema:name readcube_id
75 schema:value c7d804e8da2113185b51810a3178f9ee169a397bf5274436cf9517fafab6a0db
76 rdf:type schema:PropertyValue
77 N79da62b21e6646a1a531d9dd91b5bb6b rdf:first sg:person.01214444501.45
78 rdf:rest rdf:nil
79 N83b39cc598ed4e6dafc51de77a242eef rdf:first sg:person.011473101167.55
80 rdf:rest Ncde1ef7fae68419cbef8a631be7e248f
81 N8622f0395c7c4e6aa87decf2462edfa6 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Na3c0110a04524edd8dcae58d71fe2a53 rdf:first sg:person.012540511315.05
84 rdf:rest N6d2f1625acee4d6790e1d696dabd31e9
85 Na4d781e0a7ca4e85975b09174172a86e schema:name doi
86 schema:value 10.1186/s12859-018-2247-6
87 rdf:type schema:PropertyValue
88 Nae7c64a959ef47d695bb291c47a2ea8a schema:name nlm_unique_id
89 schema:value 100965194
90 rdf:type schema:PropertyValue
91 Nbfc347a195f74e52906a13303cd189dc schema:name dimensions_id
92 schema:value pub.1105626862
93 rdf:type schema:PropertyValue
94 Ncde1ef7fae68419cbef8a631be7e248f rdf:first sg:person.01356117464.07
95 rdf:rest N4408233a2f524dafae9e7daad828d28d
96 Ndf35fa08490140d9b963546eeb6d85c8 rdf:first sg:person.011256344060.31
97 rdf:rest N5a0e22ef0ab14f9ab4be6e1d8e62deda
98 Nedf4eb912d724762a591bed4744e1e07 schema:name pubmed_id
99 schema:value 30012108
100 rdf:type schema:PropertyValue
101 Nf2f7fa1f858b463abc99d217c6a2213b rdf:first N4995d90f9a8d4820b6f44f98881e5cdf
102 rdf:rest Na3c0110a04524edd8dcae58d71fe2a53
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information Systems
108 rdf:type schema:DefinedTerm
109 sg:grant.3860226 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-018-2247-6
110 rdf:type schema:MonetaryGrant
111 sg:journal.1023786 schema:issn 1471-2105
112 schema:name BMC Bioinformatics
113 rdf:type schema:Periodical
114 sg:person.01007571514.24 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
115 schema:familyName Cheung
116 schema:givenName Kei-Hoi
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007571514.24
118 rdf:type schema:Person
119 sg:person.011256344060.31 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
120 schema:familyName Bukhari
121 schema:givenName Syed Ahmad Chan
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256344060.31
123 rdf:type schema:Person
124 sg:person.011473101167.55 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
125 schema:familyName Graybeal
126 schema:givenName John
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473101167.55
128 rdf:type schema:Person
129 sg:person.01203116144.45 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
130 schema:familyName Willrett
131 schema:givenName Debra
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203116144.45
133 rdf:type schema:Person
134 sg:person.01214444501.45 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
135 schema:familyName Kleinstein
136 schema:givenName Steven H.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214444501.45
138 rdf:type schema:Person
139 sg:person.012540511315.05 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
140 schema:familyName Egyedi
141 schema:givenName Attila L.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012540511315.05
143 rdf:type schema:Person
144 sg:person.01356117464.07 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
145 schema:familyName Musen
146 schema:givenName Mark A.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356117464.07
148 rdf:type schema:Person
149 sg:person.0601034116.04 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
150 schema:familyName Martínez-Romero
151 schema:givenName Marcos
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601034116.04
153 rdf:type schema:Person
154 sg:pub.10.1007/11527770_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028930186
155 https://doi.org/10.1007/11527770_30
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/978-1-4842-1775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032366269
158 https://doi.org/10.1007/978-1-4842-1775-7
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-3-540-92673-3_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002789316
161 https://doi.org/10.1007/978-3-540-92673-3_25
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
164 https://doi.org/10.1038/nbt1346
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ni.3873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092708815
167 https://doi.org/10.1038/ni.3873
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/sdata.2016.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005603549
170 https://doi.org/10.1038/sdata.2016.18
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2105-12-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033063848
173 https://doi.org/10.1186/1471-2105-12-6
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2105-8-s9-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031462905
176 https://doi.org/10.1186/1471-2105-8-s9-s1
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/2041-1480-4-s1-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048470672
179 https://doi.org/10.1186/2041-1480-4-s1-s6
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/2041-1480-4-s1-s8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036578321
182 https://doi.org/10.1186/2041-1480-4-s1-s8
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/2041-1480-5-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046713170
185 https://doi.org/10.1186/2041-1480-5-37
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/gb-2012-13-1-r5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016188100
188 https://doi.org/10.1186/gb-2012-13-1-r5
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/s13007-017-0159-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083914015
191 https://doi.org/10.1186/s13007-017-0159-5
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/s13326-017-0128-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085913245
194 https://doi.org/10.1186/s13326-017-0128-y
195 rdf:type schema:CreativeWork
196 sg:pub.10.4056/sigs.147362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001957823
197 https://doi.org/10.4056/sigs.147362
198 rdf:type schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1074680452 schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/btt113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034250918
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btw331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028735402
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/jamia/ocv048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059743930
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/nar/gkh036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040530060
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/nar/gkm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045387827
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/gkp440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010962830
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/gkr1163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045165208
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/nar/gkr1178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001860160
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/nar/gkr972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012078987
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1100/tsw.2009.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015893731
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/mc.2005.330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061387443
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/mis.2006.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061405926
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1137/1.9780898717693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556578
225 rdf:type schema:CreativeWork
226 https://doi.org/10.3389/fimmu.2017.01418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092476288
227 rdf:type schema:CreativeWork
228 https://doi.org/10.5120/ijca2017914938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090772687
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
231 schema:name Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
234 schema:name Department of Emergency Medicine and Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
235 Department of Pathology, Yale School of Medicine, New Haven, CT, USA
236 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...