Variant site strain typer (VaST): efficient strain typing using a minimal number of variant genomic sites View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Tara N. Furstenau, Jill H. Cocking, Jason W. Sahl, Viacheslav Y. Fofanov

ABSTRACT

BACKGROUND: Targeted PCR amplicon sequencing (TAS) techniques provide a sensitive, scalable, and cost-effective way to query and identify closely related bacterial species and strains. Typically, this is accomplished by targeting housekeeping genes that provide resolution down to the family, genera, and sometimes species level. Unfortunately, this level of resolution is not sufficient in many applications where strain-level identification of bacteria is required (biodefense, forensics, clinical diagnostics, and outbreak investigations). Adding more genomic targets will increase the resolution, but the challenge is identifying the appropriate targets. VaST was developed to address this challenge by finding the minimum number of targets that, in combination, achieve maximum strain-level resolution for any strain complex. The final combination of target regions identified by the algorithm produce a unique haplotype for each strain which can be used as a fingerprint for identifying unknown samples in a TAS assay. VaST ensures that the targets have conserved primer regions so that the targets can be amplified in all of the known strains and it also favors the inclusion of targets with basal variants which makes the set more robust when identifying previously unseen strains. RESULTS: We analyzed VaST's performance using a number of different pathogenic species that are relevant to human disease outbreaks and biodefense. The number of targets required to achieve full resolution ranged from 20 to 88% fewer sites than what would be required in the worst case and most of the resolution is achieved within the first 20 targets. We computationally and experimentally validated one of the VaST panels and found that the targets led to accurate phylogenetic placement of strains, even when the strains were not a part of the original panel design. CONCLUSIONS: VaST is an open source software that, when provided a set of variant sites, can find the minimum number of sites that will provide maximum resolution of a strain complex, and it has many different run-time options that can accommodate a wide range of applications. VaST can be an effective tool in the design of strain identification panels that, when combined with TAS technologies, offer an efficient and inexpensive strain typing protocol. More... »

PAGES

222

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2225-z

DOI

http://dx.doi.org/10.1186/s12859-018-2225-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104515518

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29890941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., 86001, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furstenau", 
        "givenName": "Tara N.", 
        "id": "sg:person.0750266526.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750266526.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., 86001, Flagstaff, Arizona, USA", 
            "Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., 86001, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cocking", 
        "givenName": "Jill H.", 
        "id": "sg:person.01226673233.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226673233.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., 86001, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahl", 
        "givenName": "Jason W.", 
        "id": "sg:person.0636364415.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364415.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., 86001, Flagstaff, Arizona, USA", 
            "Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., 86001, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fofanov", 
        "givenName": "Viacheslav Y.", 
        "id": "sg:person.01171532274.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171532274.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0066567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003534437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1802.111305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003550984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.02671-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004232697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-9-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004377564", 
          "https://doi.org/10.1186/1471-2180-9-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/13.9.3021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004878828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005611482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005915272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006635084", 
          "https://doi.org/10.1186/1471-2105-10-176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00124-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009493125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-014-0114-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009583237", 
          "https://doi.org/10.1186/s13073-014-0114-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-014-0114-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009583237", 
          "https://doi.org/10.1186/s13073-014-0114-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evr106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010093653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-11-139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010309847", 
          "https://doi.org/10.1186/1471-2180-11-139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0039630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010357894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-72124-8_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010860589", 
          "https://doi.org/10.1007/978-0-387-72124-8_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-72124-8_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010860589", 
          "https://doi.org/10.1007/978-0-387-72124-8_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0031604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012674582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.071605-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013440171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2016.01599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1016657108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014872808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015236659", 
          "https://doi.org/10.1038/ng.705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015236659", 
          "https://doi.org/10.1038/ng.705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016800940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018010862", 
          "https://doi.org/10.1186/1471-2105-6-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.42.12.5644-5649.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018151590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018404011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.01233-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020815978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0131967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021665039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.40.10.3671-3680.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021802519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid2005.131559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028488024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0001954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028512061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1633613100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029593215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029989293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029989293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.43.9.4382-4390.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031418744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031672096", 
          "https://doi.org/10.1186/1471-2105-11-461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1404.070984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032215404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-015-0176-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032716746", 
          "https://doi.org/10.1186/s13073-015-0176-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-015-0176-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032716746", 
          "https://doi.org/10.1186/s13073-015-0176-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1462-2920.12052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033308606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.01786-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036973755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0026201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040344890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042265948", 
          "https://doi.org/10.1038/nmeth.1419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042265948", 
          "https://doi.org/10.1038/nmeth.1419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0408026101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042383197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0001319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042419592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-9-71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042741495", 
          "https://doi.org/10.1186/1471-2180-9-71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.00148-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043679260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.00046-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044114099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-food-041715-033259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045186257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00203-011-0725-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046599734", 
          "https://doi.org/10.1007/s00203-011-0725-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0008360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047268220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.184.16.4601-4611.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048537777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0710834105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051587751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.17.5808-5818.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052697628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.6.3140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053351767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mgen.0.000074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060393884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.01024-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.173.2.697-703.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062719841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.01501-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062727430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000112815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069095813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2157-2526.s3-007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072329858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2018.00551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101701460"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Targeted PCR amplicon sequencing (TAS) techniques provide a sensitive, scalable, and cost-effective way to query and identify closely related bacterial species and strains. Typically, this is accomplished by targeting housekeeping genes that provide resolution down to the family, genera, and sometimes species level. Unfortunately, this level of resolution is not sufficient in many applications where strain-level identification of bacteria is required (biodefense, forensics, clinical diagnostics, and outbreak investigations). Adding more genomic targets will increase the resolution, but the challenge is identifying the appropriate targets. VaST was developed to address this challenge by finding the minimum number of targets that, in combination, achieve maximum strain-level resolution for any strain complex. The final combination of target regions identified by the algorithm produce a unique haplotype for each strain which can be used as a fingerprint for identifying unknown samples in a TAS assay. VaST ensures that the targets have conserved primer regions so that the targets can be amplified in all of the known strains and it also favors the inclusion of targets with basal variants which makes the set more robust when identifying previously unseen strains.\nRESULTS: We analyzed VaST's performance using a number of different pathogenic species that are relevant to human disease outbreaks and biodefense. The number of targets required to achieve full resolution ranged from 20 to 88% fewer sites than what would be required in the worst case and most of the resolution is achieved within the first 20 targets. We computationally and experimentally validated one of the VaST panels and found that the targets led to accurate phylogenetic placement of strains, even when the strains were not a part of the original panel design.\nCONCLUSIONS: VaST is an open source software that, when provided a set of variant sites, can find the minimum number of sites that will provide maximum resolution of a strain complex, and it has many different run-time options that can accommodate a wide range of applications. VaST can be an effective tool in the design of strain identification panels that, when combined with TAS technologies, offer an efficient and inexpensive strain typing protocol.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-018-2225-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Variant site strain typer (VaST): efficient strain typing using a minimal number of variant genomic sites", 
    "pagination": "222", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "458ad47cf04815962aebc0f4da9d620abbd18dd73ba6449bc311619eb95cccb2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29890941"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2225-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104515518"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2225-z", 
      "https://app.dimensions.ai/details/publication/pub.1104515518"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-018-2225-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2225-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2225-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2225-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2225-z'


 

This table displays all metadata directly associated to this object as RDF triples.

277 TRIPLES      21 PREDICATES      87 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2225-z schema:about anzsrc-for:11
2 anzsrc-for:1108
3 schema:author Ne37e107984df403b92ca70343a40e785
4 schema:citation sg:pub.10.1007/978-0-387-72124-8_3
5 sg:pub.10.1007/s00203-011-0725-6
6 sg:pub.10.1038/ng.705
7 sg:pub.10.1038/nmeth.1419
8 sg:pub.10.1038/nmeth.1923
9 sg:pub.10.1186/1471-2105-10-176
10 sg:pub.10.1186/1471-2105-11-461
11 sg:pub.10.1186/1471-2105-6-38
12 sg:pub.10.1186/1471-2180-11-139
13 sg:pub.10.1186/1471-2180-9-21
14 sg:pub.10.1186/1471-2180-9-71
15 sg:pub.10.1186/s13073-014-0114-2
16 sg:pub.10.1186/s13073-015-0176-9
17 https://doi.org/10.1002/gepi.20095
18 https://doi.org/10.1073/pnas.0408026101
19 https://doi.org/10.1073/pnas.0710834105
20 https://doi.org/10.1073/pnas.1016657108
21 https://doi.org/10.1073/pnas.1633613100
22 https://doi.org/10.1073/pnas.95.6.3140
23 https://doi.org/10.1093/bioinformatics/19.2.287
24 https://doi.org/10.1093/bioinformatics/btr330
25 https://doi.org/10.1093/gbe/evr106
26 https://doi.org/10.1093/nar/13.9.3021
27 https://doi.org/10.1099/mgen.0.000074
28 https://doi.org/10.1099/mic.0.071605-0
29 https://doi.org/10.1111/1462-2920.12052
30 https://doi.org/10.1128/genomea.00148-15
31 https://doi.org/10.1128/genomea.01024-15
32 https://doi.org/10.1128/jb.00124-06
33 https://doi.org/10.1128/jb.01786-08
34 https://doi.org/10.1128/jb.173.2.697-703.1991
35 https://doi.org/10.1128/jb.184.16.4601-4611.2002
36 https://doi.org/10.1128/jb.186.17.5808-5818.2004
37 https://doi.org/10.1128/jcm.00046-16
38 https://doi.org/10.1128/jcm.01233-06
39 https://doi.org/10.1128/jcm.02671-12
40 https://doi.org/10.1128/jcm.40.10.3671-3680.2002
41 https://doi.org/10.1128/jcm.42.12.5644-5649.2004
42 https://doi.org/10.1128/jcm.43.9.4382-4390.2005
43 https://doi.org/10.1128/mbio.01501-16
44 https://doi.org/10.1146/annurev-food-041715-033259
45 https://doi.org/10.1371/journal.pntd.0001319
46 https://doi.org/10.1371/journal.pntd.0001954
47 https://doi.org/10.1371/journal.pone.0000461
48 https://doi.org/10.1371/journal.pone.0008360
49 https://doi.org/10.1371/journal.pone.0026201
50 https://doi.org/10.1371/journal.pone.0031604
51 https://doi.org/10.1371/journal.pone.0039630
52 https://doi.org/10.1371/journal.pone.0066567
53 https://doi.org/10.1371/journal.pone.0085417
54 https://doi.org/10.1371/journal.pone.0131967
55 https://doi.org/10.2144/000112815
56 https://doi.org/10.3201/eid1404.070984
57 https://doi.org/10.3201/eid1802.111305
58 https://doi.org/10.3201/eid2005.131559
59 https://doi.org/10.3389/fmicb.2016.01599
60 https://doi.org/10.3389/fmicb.2018.00551
61 https://doi.org/10.4172/2157-2526.s3-007
62 schema:datePublished 2018-12
63 schema:datePublishedReg 2018-12-01
64 schema:description BACKGROUND: Targeted PCR amplicon sequencing (TAS) techniques provide a sensitive, scalable, and cost-effective way to query and identify closely related bacterial species and strains. Typically, this is accomplished by targeting housekeeping genes that provide resolution down to the family, genera, and sometimes species level. Unfortunately, this level of resolution is not sufficient in many applications where strain-level identification of bacteria is required (biodefense, forensics, clinical diagnostics, and outbreak investigations). Adding more genomic targets will increase the resolution, but the challenge is identifying the appropriate targets. VaST was developed to address this challenge by finding the minimum number of targets that, in combination, achieve maximum strain-level resolution for any strain complex. The final combination of target regions identified by the algorithm produce a unique haplotype for each strain which can be used as a fingerprint for identifying unknown samples in a TAS assay. VaST ensures that the targets have conserved primer regions so that the targets can be amplified in all of the known strains and it also favors the inclusion of targets with basal variants which makes the set more robust when identifying previously unseen strains. RESULTS: We analyzed VaST's performance using a number of different pathogenic species that are relevant to human disease outbreaks and biodefense. The number of targets required to achieve full resolution ranged from 20 to 88% fewer sites than what would be required in the worst case and most of the resolution is achieved within the first 20 targets. We computationally and experimentally validated one of the VaST panels and found that the targets led to accurate phylogenetic placement of strains, even when the strains were not a part of the original panel design. CONCLUSIONS: VaST is an open source software that, when provided a set of variant sites, can find the minimum number of sites that will provide maximum resolution of a strain complex, and it has many different run-time options that can accommodate a wide range of applications. VaST can be an effective tool in the design of strain identification panels that, when combined with TAS technologies, offer an efficient and inexpensive strain typing protocol.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree true
68 schema:isPartOf N61d7b3362d384bd882161efc3dfad1da
69 Na883f40d97f64811b17153a4b05eebdd
70 sg:journal.1023786
71 schema:name Variant site strain typer (VaST): efficient strain typing using a minimal number of variant genomic sites
72 schema:pagination 222
73 schema:productId N12b8f3aaa7644ac2bd163f2249becfab
74 N1c34356b931449b283ac17a14ee012ae
75 N79b1619a0f2947f49cab4e085d25fddc
76 N79e0b58eaac34b7baadeea90e4d2b6f0
77 N79e95e305d9d4854828101213196cea4
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104515518
79 https://doi.org/10.1186/s12859-018-2225-z
80 schema:sdDatePublished 2019-04-10T16:51
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N7355297f75ee4a7184d5d67e3ec30af8
83 schema:url https://link.springer.com/10.1186%2Fs12859-018-2225-z
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N12b8f3aaa7644ac2bd163f2249becfab schema:name nlm_unique_id
88 schema:value 100965194
89 rdf:type schema:PropertyValue
90 N17914c7eb0c2478fbccf562868693bd6 rdf:first sg:person.01226673233.50
91 rdf:rest N966b3a855a104f8097c687c0f89fc4bc
92 N1c34356b931449b283ac17a14ee012ae schema:name pubmed_id
93 schema:value 29890941
94 rdf:type schema:PropertyValue
95 N61d7b3362d384bd882161efc3dfad1da schema:volumeNumber 19
96 rdf:type schema:PublicationVolume
97 N7355297f75ee4a7184d5d67e3ec30af8 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N79b1619a0f2947f49cab4e085d25fddc schema:name readcube_id
100 schema:value 458ad47cf04815962aebc0f4da9d620abbd18dd73ba6449bc311619eb95cccb2
101 rdf:type schema:PropertyValue
102 N79e0b58eaac34b7baadeea90e4d2b6f0 schema:name doi
103 schema:value 10.1186/s12859-018-2225-z
104 rdf:type schema:PropertyValue
105 N79e95e305d9d4854828101213196cea4 schema:name dimensions_id
106 schema:value pub.1104515518
107 rdf:type schema:PropertyValue
108 N966b3a855a104f8097c687c0f89fc4bc rdf:first sg:person.0636364415.27
109 rdf:rest Naf659f74b9cf46779c282bda3c145946
110 Na883f40d97f64811b17153a4b05eebdd schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 Naf659f74b9cf46779c282bda3c145946 rdf:first sg:person.01171532274.28
113 rdf:rest rdf:nil
114 Ne37e107984df403b92ca70343a40e785 rdf:first sg:person.0750266526.51
115 rdf:rest N17914c7eb0c2478fbccf562868693bd6
116 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
117 schema:name Medical and Health Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
120 schema:name Medical Microbiology
121 rdf:type schema:DefinedTerm
122 sg:journal.1023786 schema:issn 1471-2105
123 schema:name BMC Bioinformatics
124 rdf:type schema:Periodical
125 sg:person.01171532274.28 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
126 schema:familyName Fofanov
127 schema:givenName Viacheslav Y.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171532274.28
129 rdf:type schema:Person
130 sg:person.01226673233.50 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
131 schema:familyName Cocking
132 schema:givenName Jill H.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226673233.50
134 rdf:type schema:Person
135 sg:person.0636364415.27 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
136 schema:familyName Sahl
137 schema:givenName Jason W.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364415.27
139 rdf:type schema:Person
140 sg:person.0750266526.51 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
141 schema:familyName Furstenau
142 schema:givenName Tara N.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750266526.51
144 rdf:type schema:Person
145 sg:pub.10.1007/978-0-387-72124-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010860589
146 https://doi.org/10.1007/978-0-387-72124-8_3
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00203-011-0725-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046599734
149 https://doi.org/10.1007/s00203-011-0725-6
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ng.705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015236659
152 https://doi.org/10.1038/ng.705
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nmeth.1419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042265948
155 https://doi.org/10.1038/nmeth.1419
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
158 https://doi.org/10.1038/nmeth.1923
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2105-10-176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006635084
161 https://doi.org/10.1186/1471-2105-10-176
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1471-2105-11-461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031672096
164 https://doi.org/10.1186/1471-2105-11-461
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2105-6-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018010862
167 https://doi.org/10.1186/1471-2105-6-38
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2180-11-139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010309847
170 https://doi.org/10.1186/1471-2180-11-139
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2180-9-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004377564
173 https://doi.org/10.1186/1471-2180-9-21
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2180-9-71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042741495
176 https://doi.org/10.1186/1471-2180-9-71
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/s13073-014-0114-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009583237
179 https://doi.org/10.1186/s13073-014-0114-2
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/s13073-015-0176-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032716746
182 https://doi.org/10.1186/s13073-015-0176-9
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/gepi.20095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029989293
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.0408026101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042383197
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.0710834105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051587751
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.1016657108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014872808
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.1633613100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029593215
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.95.6.3140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053351767
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/19.2.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005611482
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/gbe/evr106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010093653
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/nar/13.9.3021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004878828
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1099/mgen.0.000074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060393884
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1099/mic.0.071605-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013440171
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/1462-2920.12052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033308606
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1128/genomea.00148-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043679260
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1128/genomea.01024-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714261
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1128/jb.00124-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009493125
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1128/jb.01786-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036973755
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1128/jb.173.2.697-703.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062719841
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1128/jb.184.16.4601-4611.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048537777
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1128/jb.186.17.5808-5818.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052697628
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1128/jcm.00046-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044114099
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1128/jcm.01233-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020815978
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1128/jcm.02671-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004232697
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1128/jcm.40.10.3671-3680.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021802519
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1128/jcm.42.12.5644-5649.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018151590
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1128/jcm.43.9.4382-4390.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031418744
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1128/mbio.01501-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062727430
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1146/annurev-food-041715-033259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045186257
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1371/journal.pntd.0001319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042419592
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1371/journal.pntd.0001954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028512061
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1371/journal.pone.0000461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005915272
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1371/journal.pone.0008360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047268220
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1371/journal.pone.0026201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040344890
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1371/journal.pone.0031604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012674582
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pone.0039630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010357894
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0066567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003534437
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pone.0085417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016800940
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pone.0131967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021665039
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2144/000112815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095813
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3201/eid1404.070984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032215404
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3201/eid1802.111305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003550984
265 rdf:type schema:CreativeWork
266 https://doi.org/10.3201/eid2005.131559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028488024
267 rdf:type schema:CreativeWork
268 https://doi.org/10.3389/fmicb.2016.01599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637066
269 rdf:type schema:CreativeWork
270 https://doi.org/10.3389/fmicb.2018.00551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101701460
271 rdf:type schema:CreativeWork
272 https://doi.org/10.4172/2157-2526.s3-007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072329858
273 rdf:type schema:CreativeWork
274 https://www.grid.ac/institutes/grid.261120.6 schema:alternateName Northern Arizona University
275 schema:name Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., 86001, Flagstaff, Arizona, USA
276 The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., 86001, Flagstaff, Arizona, USA
277 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...