Genome-wide prediction of cis-regulatory regions using supervised deep learning methods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yifeng Li, Wenqiang Shi, Wyeth W. Wasserman

ABSTRACT

BACKGROUND: In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. RESULTS: Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). CONCLUSION: The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations. More... »

PAGES

202

References to SciGraph publications

  • 2012-12. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features in BMC GENOMICS
  • 2013-04. Enhancers: five essential questions in NATURE REVIEWS GENETICS
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2014-12. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers in NATURE GENETICS
  • 2013-06. The Genotype-Tissue Expression (GTEx) project in NATURE GENETICS
  • 2012-03. ChromHMM: automating chromatin-state discovery and characterization in NATURE METHODS
  • 2015-08. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning in NATURE BIOTECHNOLOGY
  • 2001-10. RUNX1/AML1: A Central Player in Hematopoiesis in INTERNATIONAL JOURNAL OF HEMATOLOGY
  • 2001-11. The ETS-domain transcription factor family in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2010-05. GREAT improves functional interpretation of cis-regulatory regions in NATURE BIOTECHNOLOGY
  • 2014-03. An atlas of active enhancers across human cell types and tissues in NATURE
  • 2015-05. Deep learning in NATURE
  • 2006-03. CAGE: cap analysis of gene expression in NATURE METHODS
  • 2012-09. Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors in GENOME BIOLOGY
  • 2014-03. A promoter-level mammalian expression atlas in NATURE
  • 2016-09. PEDLA: predicting enhancers with a deep learning-based algorithmic framework in SCIENTIFIC REPORTS
  • 2003-12. Expression of CAAT Enhancer Binding Protein Beta (C/EBP β) in Cervix and Endometrium in MOLECULAR CANCER
  • 2014-04. Transcriptional enhancers: from properties to genome-wide predictions in NATURE REVIEWS GENETICS
  • 2011-01. Charting histone modifications and the functional organization of mammalian genomes in NATURE REVIEWS GENETICS
  • 2012-09. An integrated encyclopedia of DNA elements in the human genome in NATURE
  • 2011-12. Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4α in BMC GENOMICS
  • 2004-04. Applied bioinformatics for the identification of regulatory elements in NATURE REVIEWS GENETICS
  • 2015-10. Predicting effects of noncoding variants with deep learning-based sequence model in NATURE METHODS
  • 2015-05. Identification of active transcriptional regulatory elements from GRO-seq data in NATURE METHODS
  • 2012-05. Unsupervised pattern discovery in human chromatin structure through genomic segmentation in NATURE METHODS
  • 2015-12. High-density P300 enhancers control cell state transitions in BMC GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12859-018-2187-1

    DOI

    http://dx.doi.org/10.1186/s12859-018-2187-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104333749

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29855387


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research Council Canada", 
              "id": "https://www.grid.ac/institutes/grid.24433.32", 
              "name": [
                "Centre for Molecular Medicine and Therapeutics, BC Children\u2019s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Rm 3109, 950 West 28th Avenue, V5Z 4H4, Vancouver, Canada", 
                "Digital Technologies Research Centre, National Research Council Canada, Building M-50, 1200 Montreal Road, K1A 0R6, Ottawa, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yifeng", 
            "id": "sg:person.01162244772.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162244772.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Centre for Molecular Medicine and Therapeutics, BC Children\u2019s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Rm 3109, 950 West 28th Avenue, V5Z 4H4, Vancouver, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Wenqiang", 
            "id": "sg:person.0720753442.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720753442.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Centre for Molecular Medicine and Therapeutics, BC Children\u2019s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Rm 3109, 950 West 28th Avenue, V5Z 4H4, Vancouver, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wasserman", 
            "givenName": "Wyeth W.", 
            "id": "sg:person.01164162122.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrg3682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000164192", 
              "https://doi.org/10.1038/nrg3682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0306-211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000258165", 
              "https://doi.org/10.1038/nmeth0306-211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0306-211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000258165", 
              "https://doi.org/10.1038/nmeth0306-211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000331042", 
              "https://doi.org/10.1038/nmeth.3547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000696823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000696823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0130140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002371134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2015.05.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002424731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.148080.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002958100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003390673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003714959", 
              "https://doi.org/10.1038/nmeth.1906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1127647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004607132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2006.18.7.1527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004707137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2015.0189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004714183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(97)01103-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006171641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010020120", 
              "https://doi.org/10.1038/nature14539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1905-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010931481", 
              "https://doi.org/10.1186/s12864-015-1905-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku1058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012473095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2010.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012935976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1162228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013963804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1162228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013963804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1232542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016321428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016676991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-9-r48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017450178", 
              "https://doi.org/10.1186/gb-2012-13-9-r48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1141319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018702276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022158752", 
              "https://doi.org/10.1038/nature12787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35099076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022308098", 
              "https://doi.org/10.1038/35099076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35099076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022308098", 
              "https://doi.org/10.1038/35099076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.144899.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022883727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0130622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023020428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023421025", 
              "https://doi.org/10.1038/nbt.1630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025424080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025751373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026386976", 
              "https://doi.org/10.1038/nrg2905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026386976", 
              "https://doi.org/10.1038/nrg2905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027633460", 
              "https://doi.org/10.1186/1471-2164-13-152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02982057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028645365", 
              "https://doi.org/10.1007/bf02982057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02982057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028645365", 
              "https://doi.org/10.1007/bf02982057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029090833", 
              "https://doi.org/10.1038/ng.3142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029123553", 
              "https://doi.org/10.1038/nrg1315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029123553", 
              "https://doi.org/10.1038/nrg1315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029370855", 
              "https://doi.org/10.1038/nature13182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029971202", 
              "https://doi.org/10.1038/nmeth.1937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031924307", 
              "https://doi.org/10.1038/nmeth.3329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031954007", 
              "https://doi.org/10.1038/nrg3458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032444369", 
              "https://doi.org/10.1038/ng.2653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biochi.2003.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032489727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biochi.2003.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032489727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep28517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033194987", 
              "https://doi.org/10.1038/srep28517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.hep.2003.09.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033403488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034036004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035683083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biosystems.2015.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036135318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-4598-2-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039585224", 
              "https://doi.org/10.1186/1476-4598-2-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.169243.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040975411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2009.191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041355599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.173518.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041994759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042727634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.2037511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043751872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1210678109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044380489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045313781", 
              "https://doi.org/10.1038/nbt.3300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045365300", 
              "https://doi.org/10.1186/1471-2164-12-128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.200535.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045800387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051492062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1254806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052757843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2014.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053040014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbw113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059413204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbw113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059413204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2014.2343960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061541304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2013.50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btx105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083930632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/081380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085105214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/081380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085105214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/081380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085105214"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide.\nRESULTS: Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome).\nCONCLUSION: The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12859-018-2187-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2906083", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2520061", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Genome-wide prediction of cis-regulatory regions using supervised deep learning methods", 
        "pagination": "202", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d030b727f7ad23439cf8bdb4f7dfb1ebd3c468ab8f3d0006ae3b50bf94c26c4b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29855387"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12859-018-2187-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104333749"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12859-018-2187-1", 
          "https://app.dimensions.ai/details/publication/pub.1104333749"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000570.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12859-018-2187-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2187-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2187-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2187-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2187-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    311 TRIPLES      21 PREDICATES      94 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12859-018-2187-1 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N1f20169aea7446adb094058c05448e77
    4 schema:citation sg:pub.10.1007/bf02982057
    5 sg:pub.10.1023/a:1010933404324
    6 sg:pub.10.1038/35099076
    7 sg:pub.10.1038/nature11247
    8 sg:pub.10.1038/nature12787
    9 sg:pub.10.1038/nature13182
    10 sg:pub.10.1038/nature14539
    11 sg:pub.10.1038/nbt.1630
    12 sg:pub.10.1038/nbt.3300
    13 sg:pub.10.1038/ng.2653
    14 sg:pub.10.1038/ng.3142
    15 sg:pub.10.1038/nmeth.1906
    16 sg:pub.10.1038/nmeth.1937
    17 sg:pub.10.1038/nmeth.3329
    18 sg:pub.10.1038/nmeth.3547
    19 sg:pub.10.1038/nmeth0306-211
    20 sg:pub.10.1038/nrg1315
    21 sg:pub.10.1038/nrg2905
    22 sg:pub.10.1038/nrg3458
    23 sg:pub.10.1038/nrg3682
    24 sg:pub.10.1038/srep28517
    25 sg:pub.10.1186/1471-2164-12-128
    26 sg:pub.10.1186/1471-2164-13-152
    27 sg:pub.10.1186/1476-4598-2-21
    28 sg:pub.10.1186/gb-2012-13-9-r48
    29 sg:pub.10.1186/s12864-015-1905-6
    30 https://doi.org/10.1016/j.biochi.2003.09.006
    31 https://doi.org/10.1016/j.biosystems.2015.10.002
    32 https://doi.org/10.1016/j.hep.2003.09.034
    33 https://doi.org/10.1016/j.molcel.2010.05.004
    34 https://doi.org/10.1016/j.tig.2015.05.007
    35 https://doi.org/10.1016/j.ygeno.2014.02.002
    36 https://doi.org/10.1016/s0168-9525(97)01103-7
    37 https://doi.org/10.1073/pnas.1210678109
    38 https://doi.org/10.1089/cmb.2015.0189
    39 https://doi.org/10.1093/bib/bbw113
    40 https://doi.org/10.1093/bioinformatics/btu056
    41 https://doi.org/10.1093/bioinformatics/btv643
    42 https://doi.org/10.1093/bioinformatics/btx105
    43 https://doi.org/10.1093/nar/gkl822
    44 https://doi.org/10.1093/nar/gks1284
    45 https://doi.org/10.1093/nar/gkt519
    46 https://doi.org/10.1093/nar/gku1058
    47 https://doi.org/10.1093/nar/gkv1176
    48 https://doi.org/10.1101/081380
    49 https://doi.org/10.1101/gad.2037511
    50 https://doi.org/10.1101/gr.144899.112
    51 https://doi.org/10.1101/gr.148080.112
    52 https://doi.org/10.1101/gr.169243.113
    53 https://doi.org/10.1101/gr.173518.114
    54 https://doi.org/10.1101/gr.200535.115
    55 https://doi.org/10.1109/tcbb.2014.2343960
    56 https://doi.org/10.1109/tkde.2009.191
    57 https://doi.org/10.1109/tpami.2013.50
    58 https://doi.org/10.1111/j.1467-9868.2010.00740.x
    59 https://doi.org/10.1126/science.1127647
    60 https://doi.org/10.1126/science.1141319
    61 https://doi.org/10.1126/science.1162228
    62 https://doi.org/10.1126/science.1232542
    63 https://doi.org/10.1126/science.1254806
    64 https://doi.org/10.1162/neco.2006.18.7.1527
    65 https://doi.org/10.1371/journal.pcbi.1002968
    66 https://doi.org/10.1371/journal.pcbi.1004271
    67 https://doi.org/10.1371/journal.pone.0130140
    68 https://doi.org/10.1371/journal.pone.0130622
    69 schema:datePublished 2018-12
    70 schema:datePublishedReg 2018-12-01
    71 schema:description BACKGROUND: In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. RESULTS: Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). CONCLUSION: The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.
    72 schema:genre research_article
    73 schema:inLanguage en
    74 schema:isAccessibleForFree true
    75 schema:isPartOf N6ecdf93a584345f5996acc6f17e6e90e
    76 N8264f3309cfc40a5ac9c0056b36c9885
    77 sg:journal.1023786
    78 schema:name Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
    79 schema:pagination 202
    80 schema:productId N303bdb379c584a1abe5660df7c545457
    81 N9cc65313b5834dfaadf3a3a39a7354cd
    82 Nbf73266a0c4942358115f78c7c64e2bf
    83 Nca12fece05bf473d97e4a964182acc39
    84 Ncbdaec8b9e814578bb0209a6963849b2
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104333749
    86 https://doi.org/10.1186/s12859-018-2187-1
    87 schema:sdDatePublished 2019-04-10T22:42
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N03de357a1ee94c5d97cb34af7be087b4
    90 schema:url https://link.springer.com/10.1186%2Fs12859-018-2187-1
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N03de357a1ee94c5d97cb34af7be087b4 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 N1f20169aea7446adb094058c05448e77 rdf:first sg:person.01162244772.96
    97 rdf:rest N837ed4a6f2544498a5fa2100dbc02692
    98 N303bdb379c584a1abe5660df7c545457 schema:name pubmed_id
    99 schema:value 29855387
    100 rdf:type schema:PropertyValue
    101 N6ecdf93a584345f5996acc6f17e6e90e schema:issueNumber 1
    102 rdf:type schema:PublicationIssue
    103 N8264f3309cfc40a5ac9c0056b36c9885 schema:volumeNumber 19
    104 rdf:type schema:PublicationVolume
    105 N837ed4a6f2544498a5fa2100dbc02692 rdf:first sg:person.0720753442.29
    106 rdf:rest Ndea7790a381d4873be17be02d23263da
    107 N9cc65313b5834dfaadf3a3a39a7354cd schema:name readcube_id
    108 schema:value d030b727f7ad23439cf8bdb4f7dfb1ebd3c468ab8f3d0006ae3b50bf94c26c4b
    109 rdf:type schema:PropertyValue
    110 Nbf73266a0c4942358115f78c7c64e2bf schema:name nlm_unique_id
    111 schema:value 100965194
    112 rdf:type schema:PropertyValue
    113 Nca12fece05bf473d97e4a964182acc39 schema:name dimensions_id
    114 schema:value pub.1104333749
    115 rdf:type schema:PropertyValue
    116 Ncbdaec8b9e814578bb0209a6963849b2 schema:name doi
    117 schema:value 10.1186/s12859-018-2187-1
    118 rdf:type schema:PropertyValue
    119 Ndea7790a381d4873be17be02d23263da rdf:first sg:person.01164162122.26
    120 rdf:rest rdf:nil
    121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Biological Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Genetics
    126 rdf:type schema:DefinedTerm
    127 sg:grant.2520061 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-018-2187-1
    128 rdf:type schema:MonetaryGrant
    129 sg:grant.2906083 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-018-2187-1
    130 rdf:type schema:MonetaryGrant
    131 sg:journal.1023786 schema:issn 1471-2105
    132 schema:name BMC Bioinformatics
    133 rdf:type schema:Periodical
    134 sg:person.01162244772.96 schema:affiliation https://www.grid.ac/institutes/grid.24433.32
    135 schema:familyName Li
    136 schema:givenName Yifeng
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162244772.96
    138 rdf:type schema:Person
    139 sg:person.01164162122.26 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    140 schema:familyName Wasserman
    141 schema:givenName Wyeth W.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26
    143 rdf:type schema:Person
    144 sg:person.0720753442.29 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    145 schema:familyName Shi
    146 schema:givenName Wenqiang
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720753442.29
    148 rdf:type schema:Person
    149 sg:pub.10.1007/bf02982057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028645365
    150 https://doi.org/10.1007/bf02982057
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    153 https://doi.org/10.1023/a:1010933404324
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/35099076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022308098
    156 https://doi.org/10.1038/35099076
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    159 https://doi.org/10.1038/nature11247
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
    162 https://doi.org/10.1038/nature12787
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nature13182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029370855
    165 https://doi.org/10.1038/nature13182
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
    168 https://doi.org/10.1038/nature14539
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nbt.1630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023421025
    171 https://doi.org/10.1038/nbt.1630
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nbt.3300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045313781
    174 https://doi.org/10.1038/nbt.3300
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/ng.2653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032444369
    177 https://doi.org/10.1038/ng.2653
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/ng.3142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029090833
    180 https://doi.org/10.1038/ng.3142
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nmeth.1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003714959
    183 https://doi.org/10.1038/nmeth.1906
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nmeth.1937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029971202
    186 https://doi.org/10.1038/nmeth.1937
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nmeth.3329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031924307
    189 https://doi.org/10.1038/nmeth.3329
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nmeth.3547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000331042
    192 https://doi.org/10.1038/nmeth.3547
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmeth0306-211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000258165
    195 https://doi.org/10.1038/nmeth0306-211
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nrg1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029123553
    198 https://doi.org/10.1038/nrg1315
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nrg2905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026386976
    201 https://doi.org/10.1038/nrg2905
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nrg3458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031954007
    204 https://doi.org/10.1038/nrg3458
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nrg3682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000164192
    207 https://doi.org/10.1038/nrg3682
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/srep28517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033194987
    210 https://doi.org/10.1038/srep28517
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/1471-2164-12-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045365300
    213 https://doi.org/10.1186/1471-2164-12-128
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1471-2164-13-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027633460
    216 https://doi.org/10.1186/1471-2164-13-152
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1476-4598-2-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039585224
    219 https://doi.org/10.1186/1476-4598-2-21
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/gb-2012-13-9-r48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017450178
    222 https://doi.org/10.1186/gb-2012-13-9-r48
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/s12864-015-1905-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010931481
    225 https://doi.org/10.1186/s12864-015-1905-6
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.biochi.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032489727
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.biosystems.2015.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036135318
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.hep.2003.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033403488
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.molcel.2010.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012935976
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.tig.2015.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002424731
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.ygeno.2014.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053040014
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/s0168-9525(97)01103-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006171641
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1073/pnas.1210678109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044380489
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1089/cmb.2015.0189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004714183
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1093/bib/bbw113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413204
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1093/bioinformatics/btu056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035683083
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1093/bioinformatics/btv643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003390673
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1093/bioinformatics/btx105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083930632
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1093/nar/gkl822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042727634
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1093/nar/gks1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016676991
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1093/nar/gkt519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051492062
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1093/nar/gku1058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012473095
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1093/nar/gkv1176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034036004
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1101/081380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085105214
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1101/gad.2037511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043751872
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1101/gr.144899.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022883727
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1101/gr.148080.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002958100
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1101/gr.169243.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040975411
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1101/gr.173518.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041994759
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1101/gr.200535.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045800387
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1109/tcbb.2014.2343960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541304
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1109/tkde.2009.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041355599
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1109/tpami.2013.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744581
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1111/j.1467-9868.2010.00740.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000696823
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1126/science.1127647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004607132
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1126/science.1141319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018702276
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1126/science.1162228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013963804
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1126/science.1232542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016321428
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1126/science.1254806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052757843
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1162/neco.2006.18.7.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707137
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1371/journal.pcbi.1002968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025424080
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1371/journal.pcbi.1004271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025751373
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1371/journal.pone.0130140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002371134
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1371/journal.pone.0130622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023020428
    304 rdf:type schema:CreativeWork
    305 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
    306 schema:name Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Rm 3109, 950 West 28th Avenue, V5Z 4H4, Vancouver, Canada
    307 rdf:type schema:Organization
    308 https://www.grid.ac/institutes/grid.24433.32 schema:alternateName National Research Council Canada
    309 schema:name Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Rm 3109, 950 West 28th Avenue, V5Z 4H4, Vancouver, Canada
    310 Digital Technologies Research Centre, National Research Council Canada, Building M-50, 1200 Montreal Road, K1A 0R6, Ottawa, Canada
    311 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...