QTLTableMiner++: semantic mining of QTL tables in scientific articles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Gurnoor Singh, Arnold Kuzniar, Erik M. van Mulligen, Anand Gavai, Christian W. Bachem, Richard G.F. Visser, Richard Finkers

ABSTRACT

BACKGROUND: A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. RESULTS: The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. CONCLUSION: QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats. More... »

PAGES

183

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2165-7

DOI

http://dx.doi.org/10.1186/s12859-018-2165-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104240960

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29801439


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Gurnoor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands eScience Center", 
          "id": "https://www.grid.ac/institutes/grid.454309.f", 
          "name": [
            "Netherlands eScience Center (NLeSC), Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuzniar", 
        "givenName": "Arnold", 
        "id": "sg:person.01126213515.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126213515.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Mulligen", 
        "givenName": "Erik M.", 
        "id": "sg:person.0630315621.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630315621.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands eScience Center", 
          "id": "https://www.grid.ac/institutes/grid.454309.f", 
          "name": [
            "Netherlands eScience Center (NLeSC), Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gavai", 
        "givenName": "Anand", 
        "id": "sg:person.0733507312.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733507312.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bachem", 
        "givenName": "Christian W.", 
        "id": "sg:person.01325137577.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325137577.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visser", 
        "givenName": "Richard G.F.", 
        "id": "sg:person.07374343732.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374343732.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finkers", 
        "givenName": "Richard", 
        "id": "sg:person.01157055063.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157055063.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2008/496957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000684718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002066754", 
          "https://doi.org/10.1186/1471-2105-11-525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002066754", 
          "https://doi.org/10.1186/1471-2105-11-525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.1200222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003326909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005532132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2016.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005603549", 
          "https://doi.org/10.1038/sdata.2016.18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2016.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005603549", 
          "https://doi.org/10.1038/sdata.2016.18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bap005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005726772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pcs163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007929706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-013-9911-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009144061", 
          "https://doi.org/10.1007/s11032-013-9911-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010337067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022815743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-5-r44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026484271", 
          "https://doi.org/10.1186/gb-2005-6-5-r44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34002-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034140548", 
          "https://doi.org/10.1007/978-3-642-34002-4_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fphys.2012.00326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049249133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050436978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/1453856.1453916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/2002938.2002939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075243206", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iri.2014.7051955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094526655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0005660102230228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099546533"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file.\nRESULTS: The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall.\nCONCLUSION: QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-018-2165-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "QTLTableMiner++: semantic mining of QTL tables in scientific articles", 
    "pagination": "183", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c942ba5295a6b93e4147947492d4ddf05856b569a72365a7209d2b8b1c45f314"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29801439"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2165-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104240960"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2165-7", 
      "https://app.dimensions.ai/details/publication/pub.1104240960"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-018-2165-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2165-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2165-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2165-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2165-7'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2165-7 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N165cbe06cc764be394ae713df896e4c6
4 schema:citation sg:pub.10.1007/978-3-642-34002-4_11
5 sg:pub.10.1007/s11032-013-9911-3
6 sg:pub.10.1038/75556
7 sg:pub.10.1038/sdata.2016.18
8 sg:pub.10.1186/1471-2105-11-525
9 sg:pub.10.1186/gb-2005-6-5-r44
10 https://app.dimensions.ai/details/publication/pub.1075243206
11 https://doi.org/10.1093/bioinformatics/btv016
12 https://doi.org/10.1093/database/bap005
13 https://doi.org/10.1093/nar/gkl946
14 https://doi.org/10.1093/nar/gks1146
15 https://doi.org/10.1093/nar/gku1061
16 https://doi.org/10.1093/nar/gku1195
17 https://doi.org/10.1093/pcp/pcs163
18 https://doi.org/10.1109/iri.2014.7051955
19 https://doi.org/10.1155/2008/496957
20 https://doi.org/10.14778/1453856.1453916
21 https://doi.org/10.14778/2002938.2002939
22 https://doi.org/10.3389/fphys.2012.00326
23 https://doi.org/10.3732/ajb.1200222
24 https://doi.org/10.5220/0005660102230228
25 schema:datePublished 2018-12
26 schema:datePublishedReg 2018-12-01
27 schema:description BACKGROUND: A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. RESULTS: The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. CONCLUSION: QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N07747b99b3bd42f2bb63094069bb442a
32 N8945c2e0c438472d8f09fc2b69bcc3ac
33 sg:journal.1023786
34 schema:name QTLTableMiner++: semantic mining of QTL tables in scientific articles
35 schema:pagination 183
36 schema:productId N0cd62e3f66714c8dbc0f9758d95f50d5
37 N55861b06f3f94705adeed4cb32429970
38 N7828938ef2304c26bd5399c1edcb8c7c
39 N9694dc15a1d8475691a28dbf9afe7f33
40 Nf3238de244d5462385f0a9d30aa2fd1b
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104240960
42 https://doi.org/10.1186/s12859-018-2165-7
43 schema:sdDatePublished 2019-04-10T16:00
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Na599e9dc437449af98d9f75001ac98f0
46 schema:url https://link.springer.com/10.1186%2Fs12859-018-2165-7
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N07747b99b3bd42f2bb63094069bb442a schema:issueNumber 1
51 rdf:type schema:PublicationIssue
52 N098bea24f4494d499669087f5223063e schema:affiliation https://www.grid.ac/institutes/grid.4818.5
53 schema:familyName Singh
54 schema:givenName Gurnoor
55 rdf:type schema:Person
56 N0cd62e3f66714c8dbc0f9758d95f50d5 schema:name readcube_id
57 schema:value c942ba5295a6b93e4147947492d4ddf05856b569a72365a7209d2b8b1c45f314
58 rdf:type schema:PropertyValue
59 N165cbe06cc764be394ae713df896e4c6 rdf:first N098bea24f4494d499669087f5223063e
60 rdf:rest Ned2407bdbb68440f8632c17b9aa2bddb
61 N55861b06f3f94705adeed4cb32429970 schema:name pubmed_id
62 schema:value 29801439
63 rdf:type schema:PropertyValue
64 N684141efe73a4cb78dbc7ee877bec88a rdf:first sg:person.07374343732.28
65 rdf:rest Nf25dc2c236f942cf9f7c1abd0e4103f1
66 N7828938ef2304c26bd5399c1edcb8c7c schema:name doi
67 schema:value 10.1186/s12859-018-2165-7
68 rdf:type schema:PropertyValue
69 N8945c2e0c438472d8f09fc2b69bcc3ac schema:volumeNumber 19
70 rdf:type schema:PublicationVolume
71 N91253b4aaa444de484b9c2897368caa4 rdf:first sg:person.01325137577.90
72 rdf:rest N684141efe73a4cb78dbc7ee877bec88a
73 N9694dc15a1d8475691a28dbf9afe7f33 schema:name nlm_unique_id
74 schema:value 100965194
75 rdf:type schema:PropertyValue
76 Na599e9dc437449af98d9f75001ac98f0 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nb851035b58aa4d0e8b5a596c53662ba9 rdf:first sg:person.0630315621.35
79 rdf:rest Ndd5be86fd46047febc07028378000ad0
80 Ndd5be86fd46047febc07028378000ad0 rdf:first sg:person.0733507312.15
81 rdf:rest N91253b4aaa444de484b9c2897368caa4
82 Ned2407bdbb68440f8632c17b9aa2bddb rdf:first sg:person.01126213515.50
83 rdf:rest Nb851035b58aa4d0e8b5a596c53662ba9
84 Nf25dc2c236f942cf9f7c1abd0e4103f1 rdf:first sg:person.01157055063.55
85 rdf:rest rdf:nil
86 Nf3238de244d5462385f0a9d30aa2fd1b schema:name dimensions_id
87 schema:value pub.1104240960
88 rdf:type schema:PropertyValue
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information Systems
94 rdf:type schema:DefinedTerm
95 sg:journal.1023786 schema:issn 1471-2105
96 schema:name BMC Bioinformatics
97 rdf:type schema:Periodical
98 sg:person.01126213515.50 schema:affiliation https://www.grid.ac/institutes/grid.454309.f
99 schema:familyName Kuzniar
100 schema:givenName Arnold
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126213515.50
102 rdf:type schema:Person
103 sg:person.01157055063.55 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
104 schema:familyName Finkers
105 schema:givenName Richard
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157055063.55
107 rdf:type schema:Person
108 sg:person.01325137577.90 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
109 schema:familyName Bachem
110 schema:givenName Christian W.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325137577.90
112 rdf:type schema:Person
113 sg:person.0630315621.35 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
114 schema:familyName van Mulligen
115 schema:givenName Erik M.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630315621.35
117 rdf:type schema:Person
118 sg:person.0733507312.15 schema:affiliation https://www.grid.ac/institutes/grid.454309.f
119 schema:familyName Gavai
120 schema:givenName Anand
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733507312.15
122 rdf:type schema:Person
123 sg:person.07374343732.28 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
124 schema:familyName Visser
125 schema:givenName Richard G.F.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374343732.28
127 rdf:type schema:Person
128 sg:pub.10.1007/978-3-642-34002-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034140548
129 https://doi.org/10.1007/978-3-642-34002-4_11
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11032-013-9911-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009144061
132 https://doi.org/10.1007/s11032-013-9911-3
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
135 https://doi.org/10.1038/75556
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/sdata.2016.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005603549
138 https://doi.org/10.1038/sdata.2016.18
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1471-2105-11-525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002066754
141 https://doi.org/10.1186/1471-2105-11-525
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/gb-2005-6-5-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026484271
144 https://doi.org/10.1186/gb-2005-6-5-r44
145 rdf:type schema:CreativeWork
146 https://app.dimensions.ai/details/publication/pub.1075243206 schema:CreativeWork
147 https://doi.org/10.1093/bioinformatics/btv016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414376
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/database/bap005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005726772
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/nar/gkl946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050436978
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/nar/gks1146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010337067
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/nar/gku1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532132
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/nar/gku1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022815743
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/pcp/pcs163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007929706
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/iri.2014.7051955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094526655
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1155/2008/496957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000684718
164 rdf:type schema:CreativeWork
165 https://doi.org/10.14778/1453856.1453916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367355
166 rdf:type schema:CreativeWork
167 https://doi.org/10.14778/2002938.2002939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367877
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3389/fphys.2012.00326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049249133
170 rdf:type schema:CreativeWork
171 https://doi.org/10.3732/ajb.1200222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003326909
172 rdf:type schema:CreativeWork
173 https://doi.org/10.5220/0005660102230228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099546533
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.454309.f schema:alternateName Netherlands eScience Center
176 schema:name Netherlands eScience Center (NLeSC), Amsterdam, The Netherlands
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
179 schema:name Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
182 schema:name Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...