A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Pathima Nusrath Hameed, Karin Verspoor, Snezana Kusljic, Saman Halgamuge

ABSTRACT

BACKGROUND: Drug repositioning is the process of identifying new uses for existing drugs. Computational drug repositioning methods can reduce the time, costs and risks of drug development by automating the analysis of the relationships in pharmacology networks. Pharmacology networks are large and heterogeneous. Clustering drugs into small groups can simplify large pharmacology networks, these subgroups can also be used as a starting point for repositioning drugs. In this paper, we propose a two-tiered drug-centric unsupervised clustering approach for drug repositioning, integrating heterogeneous drug data profiles: drug-chemical, drug-disease, drug-gene, drug-protein and drug-side effect relationships. RESULTS: The proposed drug repositioning approach is threefold; (i) clustering drugs based on their homogeneous profiles using the Growing Self Organizing Map (GSOM); (ii) clustering drugs based on drug-drug relation matrices based on the previous step, considering three state-of-the-art graph clustering methods; and (iii) inferring drug repositioning candidates and assigning a confidence value for each identified candidate. In this paper, we compare our two-tiered clustering approach against two existing heterogeneous data integration approaches with reference to the Anatomical Therapeutic Chemical (ATC) classification, using GSOM. Our approach yields Normalized Mutual Information (NMI) and Standardized Mutual Information (SMI) of 0.66 and 36.11, respectively, while the two existing methods yield NMI of 0.60 and 0.64 and SMI of 22.26 and 33.59. Moreover, the two existing approaches failed to produce useful cluster separations when using graph clustering algorithms while our approach is able to identify useful clusters for drug repositioning. Furthermore, we provide clinical evidence for four predicted results (Chlorthalidone, Indomethacin, Metformin and Thioridazine) to support that our proposed approach can be reliably used to infer ATC code and drug repositioning. CONCLUSION: The proposed two-tiered unsupervised clustering approach is suitable for drug clustering and enables heterogeneous data integration. It also enables identifying reliable repositioning drug candidates with reference to ATC therapeutic classification. The repositioning drug candidates identified consistently by multiple clustering algorithms and with high confidence have a higher possibility of being effective repositioning candidates. More... »

PAGES

129

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2123-4

DOI

http://dx.doi.org/10.1186/s12859-018-2123-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103149200

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29642848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Repositioning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmaceutical Preparations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ruhuna", 
          "id": "https://www.grid.ac/institutes/grid.412759.c", 
          "name": [
            "Department of Mechanical Engineering, University of Melbourne, Parkville, 3010, Melbourne, Australia", 
            "Data61, Victoria Research Lab, 3003, West Melbourne, Australia", 
            "Department of Computer Science, University of Ruhuna, 81000, Matara, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hameed", 
        "givenName": "Pathima Nusrath", 
        "id": "sg:person.015546135573.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546135573.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Department of Computing and Information Systems, University of Melbourne, Parkville, 3010, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verspoor", 
        "givenName": "Karin", 
        "id": "sg:person.01372713104.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372713104.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Department of Nursing, University of Melbourne, Parkville, 3010, Melbourne, Australia", 
            "The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kusljic", 
        "givenName": "Snezana", 
        "id": "sg:person.01332010677.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332010677.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Australian National University", 
          "id": "https://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Research School of Engineering, College of Engineering & Computer Science, The Australian National University, 2601, Canberra, ACT, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halgamuge", 
        "givenName": "Saman", 
        "id": "sg:person.0776521010.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776521010.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bib/bbr013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000546981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000616962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2010.05679.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000744892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2010.05679.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000744892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.7.1575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001067672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1118-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001833764", 
          "https://doi.org/10.1186/s12859-016-1118-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1118-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001833764", 
          "https://doi.org/10.1186/s12859-016-1118-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-7-s3-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002339901", 
          "https://doi.org/10.1186/1752-0509-7-s3-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.845141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002360675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.845141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002360675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003746243", 
          "https://doi.org/10.1186/1471-2105-9-215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cbdd.12378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004037901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007164886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007164886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009187256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2011-000214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009746599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2011-000076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010673582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-5-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010845049", 
          "https://doi.org/10.1186/1758-2946-5-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012441209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013256259", 
          "https://doi.org/10.1186/1471-2105-4-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013256259", 
          "https://doi.org/10.1186/1471-2105-4-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-016-0371-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013719366", 
          "https://doi.org/10.1186/s12918-016-0371-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-016-0371-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013719366", 
          "https://doi.org/10.1186/s12918-016-0371-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014368479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3mb70490d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014637717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbv020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016139510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0035254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016277496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017011060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-7-s5-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017196033", 
          "https://doi.org/10.1186/1752-0509-7-s5-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018811977", 
          "https://doi.org/10.1038/nbt1338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1074248413497257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019101085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1074248413497257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019101085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urolonc.2016.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020955679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021584122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021584122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-8227(91)90003-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024074931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025848767", 
          "https://doi.org/10.1186/1471-2105-11-522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.0000203309.07140.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027045895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.0000203309.07140.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027045895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027280155", 
          "https://doi.org/10.1038/nmeth.1938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027543334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.3346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032825493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97610-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174751", 
          "https://doi.org/10.1007/978-3-642-97610-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97610-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174751", 
          "https://doi.org/10.1007/978-3-642-97610-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2014.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034042711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/ebo.s12012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034247648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjmed.2012.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034942940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2011-000699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035468936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036547327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.02.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036578639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40595-016-0086-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037743520", 
          "https://doi.org/10.1007/s40595-016-0086-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40595-016-0086-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037743520", 
          "https://doi.org/10.1007/s40595-016-0086-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038043356", 
          "https://doi.org/10.1186/1471-2105-14-181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038043356", 
          "https://doi.org/10.1186/1471-2105-14-181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038043356", 
          "https://doi.org/10.1186/1471-2105-14-181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038070182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038070182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/14779072.5.3.491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038697314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040038059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0427(87)90125-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041584630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042802800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043603670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0709-0_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049290278", 
          "https://doi.org/10.1007/978-1-4939-0709-0_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/14651858.cd001944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049719804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050035736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci400010x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055403126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdw410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059394839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbw048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbw113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbw113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.846732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1568026616666160216153249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069195459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074765468", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.25103/jestr.105.03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092836931"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Drug repositioning is the process of identifying new uses for existing drugs. Computational drug repositioning methods can reduce the time, costs and risks of drug development by automating the analysis of the relationships in pharmacology networks. Pharmacology networks are large and heterogeneous. Clustering drugs into small groups can simplify large pharmacology networks, these subgroups can also be used as a starting point for repositioning drugs. In this paper, we propose a two-tiered drug-centric unsupervised clustering approach for drug repositioning, integrating heterogeneous drug data profiles: drug-chemical, drug-disease, drug-gene, drug-protein and drug-side effect relationships.\nRESULTS: The proposed drug repositioning approach is threefold; (i) clustering drugs based on their homogeneous profiles using the Growing Self Organizing Map (GSOM); (ii) clustering drugs based on drug-drug relation matrices based on the previous step, considering three state-of-the-art graph clustering methods; and (iii) inferring drug repositioning candidates and assigning a confidence value for each identified candidate. In this paper, we compare our two-tiered clustering approach against two existing heterogeneous data integration approaches with reference to the Anatomical Therapeutic Chemical (ATC) classification, using GSOM. Our approach yields Normalized Mutual Information (NMI) and Standardized Mutual Information (SMI) of 0.66 and 36.11, respectively, while the two existing methods yield NMI of 0.60 and 0.64 and SMI of 22.26 and 33.59. Moreover, the two existing approaches failed to produce useful cluster separations when using graph clustering algorithms while our approach is able to identify useful clusters for drug repositioning. Furthermore, we provide clinical evidence for four predicted results (Chlorthalidone, Indomethacin, Metformin and Thioridazine) to support that our proposed approach can be reliably used to infer ATC code and drug repositioning.\nCONCLUSION: The proposed two-tiered unsupervised clustering approach is suitable for drug clustering and enables heterogeneous data integration. It also enables identifying reliable repositioning drug candidates with reference to ATC therapeutic classification. The repositioning drug candidates identified consistently by multiple clustering algorithms and with high confidence have a higher possibility of being effective repositioning candidates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-018-2123-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration", 
    "pagination": "129", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2123-4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "380d156a36bb1ce4a8e7c386bc0a7c8055a3561ba6c2b6702f36018990881583"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103149200"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29642848"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2123-4", 
      "https://app.dimensions.ai/details/publication/pub.1103149200"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56154_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-018-2123-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2123-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2123-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2123-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2123-4'


 

This table displays all metadata directly associated to this object as RDF triples.

317 TRIPLES      21 PREDICATES      95 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2123-4 schema:about N107a34695c0e4622a013c74a9ada2491
2 N2bd9751ad934494ab42ae506db6518c7
3 N2e13c4acea3a4dffb366cbb16ceb0da8
4 N669cb08a55894c6a8b101de42b1730c7
5 N835bd09c0c1043a69bcea77401a00c5b
6 N8ac872f80efa4e128525265a631fbe3a
7 Nadfa20eb5db04e4da24ac8c3460f68ae
8 anzsrc-for:11
9 anzsrc-for:1115
10 schema:author N1c57ca37245e484687f572b1a9a491e8
11 schema:citation sg:pub.10.1007/978-1-4939-0709-0_14
12 sg:pub.10.1007/978-3-642-97610-0
13 sg:pub.10.1007/s40595-016-0086-9
14 sg:pub.10.1038/nbt1338
15 sg:pub.10.1038/nmeth.1938
16 sg:pub.10.1186/1471-2105-11-522
17 sg:pub.10.1186/1471-2105-14-181
18 sg:pub.10.1186/1471-2105-4-2
19 sg:pub.10.1186/1471-2105-9-215
20 sg:pub.10.1186/1752-0509-7-s3-s4
21 sg:pub.10.1186/1752-0509-7-s5-s6
22 sg:pub.10.1186/1758-2946-5-30
23 sg:pub.10.1186/s12859-016-1118-2
24 sg:pub.10.1186/s12918-016-0371-3
25 https://app.dimensions.ai/details/publication/pub.1074765468
26 https://doi.org/10.1002/14651858.cd001944
27 https://doi.org/10.1002/pds.3346
28 https://doi.org/10.1016/0168-8227(91)90003-v
29 https://doi.org/10.1016/0377-0427(87)90125-7
30 https://doi.org/10.1016/j.amjmed.2012.05.023
31 https://doi.org/10.1016/j.artmed.2009.11.002
32 https://doi.org/10.1016/j.eswa.2010.02.084
33 https://doi.org/10.1016/j.jbi.2014.03.014
34 https://doi.org/10.1016/j.urolonc.2016.10.009
35 https://doi.org/10.1021/ci400010x
36 https://doi.org/10.1038/msb.2009.98
37 https://doi.org/10.1039/c3mb70490d
38 https://doi.org/10.1093/annonc/mdw410
39 https://doi.org/10.1093/bib/bbr013
40 https://doi.org/10.1093/bib/bbv020
41 https://doi.org/10.1093/bib/bbw048
42 https://doi.org/10.1093/bib/bbw113
43 https://doi.org/10.1093/bioinformatics/btg296
44 https://doi.org/10.1093/bioinformatics/btp465
45 https://doi.org/10.1093/bioinformatics/btq176
46 https://doi.org/10.1093/nar/30.7.1575
47 https://doi.org/10.1093/nar/gkh061
48 https://doi.org/10.1093/nar/gkh131
49 https://doi.org/10.1093/nar/gkh151
50 https://doi.org/10.1093/nar/gkm958
51 https://doi.org/10.1093/nar/gkp456
52 https://doi.org/10.1109/72.846732
53 https://doi.org/10.1109/tnn.2005.845141
54 https://doi.org/10.1111/cbdd.12378
55 https://doi.org/10.1111/j.1749-6632.2010.05679.x
56 https://doi.org/10.1126/science.1158140
57 https://doi.org/10.1136/amiajnl-2011-000214
58 https://doi.org/10.1136/amiajnl-2011-000699
59 https://doi.org/10.1136/bmjopen-2011-000076
60 https://doi.org/10.1161/01.hyp.0000203309.07140.d3
61 https://doi.org/10.1177/1074248413497257
62 https://doi.org/10.1371/journal.pcbi.1000385
63 https://doi.org/10.1371/journal.pcbi.1000662
64 https://doi.org/10.1371/journal.pcbi.1002323
65 https://doi.org/10.1371/journal.pone.0035254
66 https://doi.org/10.1586/14779072.5.3.491
67 https://doi.org/10.2174/1568026616666160216153249
68 https://doi.org/10.25103/jestr.105.03
69 https://doi.org/10.4137/ebo.s12012
70 schema:datePublished 2018-12
71 schema:datePublishedReg 2018-12-01
72 schema:description BACKGROUND: Drug repositioning is the process of identifying new uses for existing drugs. Computational drug repositioning methods can reduce the time, costs and risks of drug development by automating the analysis of the relationships in pharmacology networks. Pharmacology networks are large and heterogeneous. Clustering drugs into small groups can simplify large pharmacology networks, these subgroups can also be used as a starting point for repositioning drugs. In this paper, we propose a two-tiered drug-centric unsupervised clustering approach for drug repositioning, integrating heterogeneous drug data profiles: drug-chemical, drug-disease, drug-gene, drug-protein and drug-side effect relationships. RESULTS: The proposed drug repositioning approach is threefold; (i) clustering drugs based on their homogeneous profiles using the Growing Self Organizing Map (GSOM); (ii) clustering drugs based on drug-drug relation matrices based on the previous step, considering three state-of-the-art graph clustering methods; and (iii) inferring drug repositioning candidates and assigning a confidence value for each identified candidate. In this paper, we compare our two-tiered clustering approach against two existing heterogeneous data integration approaches with reference to the Anatomical Therapeutic Chemical (ATC) classification, using GSOM. Our approach yields Normalized Mutual Information (NMI) and Standardized Mutual Information (SMI) of 0.66 and 36.11, respectively, while the two existing methods yield NMI of 0.60 and 0.64 and SMI of 22.26 and 33.59. Moreover, the two existing approaches failed to produce useful cluster separations when using graph clustering algorithms while our approach is able to identify useful clusters for drug repositioning. Furthermore, we provide clinical evidence for four predicted results (Chlorthalidone, Indomethacin, Metformin and Thioridazine) to support that our proposed approach can be reliably used to infer ATC code and drug repositioning. CONCLUSION: The proposed two-tiered unsupervised clustering approach is suitable for drug clustering and enables heterogeneous data integration. It also enables identifying reliable repositioning drug candidates with reference to ATC therapeutic classification. The repositioning drug candidates identified consistently by multiple clustering algorithms and with high confidence have a higher possibility of being effective repositioning candidates.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree true
76 schema:isPartOf N9abf79951dec4d468578b424fae978b9
77 Ndb52b2eb23a441f2a6d71d5e061a128f
78 sg:journal.1023786
79 schema:name A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration
80 schema:pagination 129
81 schema:productId N1c048370f0d840598fd2593e89dc9307
82 N2a43e2eaa9fb45aaac3bafb06e2dd626
83 Ncc0559e91c354ecda32bcf402adf7547
84 Ndc79227c88824b0f9c9157edaa35f2be
85 Ne4c31f1d709c44589e82ff133ba24b2c
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103149200
87 https://doi.org/10.1186/s12859-018-2123-4
88 schema:sdDatePublished 2019-04-15T09:08
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nb2c8c1cfaee34ebfbf32bbcc7506de60
91 schema:url https://link.springer.com/10.1186%2Fs12859-018-2123-4
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N107a34695c0e4622a013c74a9ada2491 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Computational Biology
97 rdf:type schema:DefinedTerm
98 N160be05d62ce40988756e3bfa1c420dc rdf:first sg:person.0776521010.41
99 rdf:rest rdf:nil
100 N1c048370f0d840598fd2593e89dc9307 schema:name readcube_id
101 schema:value 380d156a36bb1ce4a8e7c386bc0a7c8055a3561ba6c2b6702f36018990881583
102 rdf:type schema:PropertyValue
103 N1c57ca37245e484687f572b1a9a491e8 rdf:first sg:person.015546135573.63
104 rdf:rest N77fa03c000d146ccbbe7ea81328869ed
105 N2a43e2eaa9fb45aaac3bafb06e2dd626 schema:name dimensions_id
106 schema:value pub.1103149200
107 rdf:type schema:PropertyValue
108 N2bd9751ad934494ab42ae506db6518c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Cluster Analysis
110 rdf:type schema:DefinedTerm
111 N2e13c4acea3a4dffb366cbb16ceb0da8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Drug Repositioning
113 rdf:type schema:DefinedTerm
114 N669cb08a55894c6a8b101de42b1730c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Algorithms
116 rdf:type schema:DefinedTerm
117 N73e651b357644753be15fbb035da9655 rdf:first sg:person.01332010677.34
118 rdf:rest N160be05d62ce40988756e3bfa1c420dc
119 N77fa03c000d146ccbbe7ea81328869ed rdf:first sg:person.01372713104.04
120 rdf:rest N73e651b357644753be15fbb035da9655
121 N835bd09c0c1043a69bcea77401a00c5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Pharmaceutical Preparations
123 rdf:type schema:DefinedTerm
124 N8ac872f80efa4e128525265a631fbe3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 N9abf79951dec4d468578b424fae978b9 schema:issueNumber 1
128 rdf:type schema:PublicationIssue
129 Nadfa20eb5db04e4da24ac8c3460f68ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Statistics as Topic
131 rdf:type schema:DefinedTerm
132 Nb2c8c1cfaee34ebfbf32bbcc7506de60 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 Ncc0559e91c354ecda32bcf402adf7547 schema:name pubmed_id
135 schema:value 29642848
136 rdf:type schema:PropertyValue
137 Ndb52b2eb23a441f2a6d71d5e061a128f schema:volumeNumber 19
138 rdf:type schema:PublicationVolume
139 Ndc79227c88824b0f9c9157edaa35f2be schema:name nlm_unique_id
140 schema:value 100965194
141 rdf:type schema:PropertyValue
142 Ne4c31f1d709c44589e82ff133ba24b2c schema:name doi
143 schema:value 10.1186/s12859-018-2123-4
144 rdf:type schema:PropertyValue
145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
146 schema:name Medical and Health Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
149 schema:name Pharmacology and Pharmaceutical Sciences
150 rdf:type schema:DefinedTerm
151 sg:journal.1023786 schema:issn 1471-2105
152 schema:name BMC Bioinformatics
153 rdf:type schema:Periodical
154 sg:person.01332010677.34 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
155 schema:familyName Kusljic
156 schema:givenName Snezana
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332010677.34
158 rdf:type schema:Person
159 sg:person.01372713104.04 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
160 schema:familyName Verspoor
161 schema:givenName Karin
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372713104.04
163 rdf:type schema:Person
164 sg:person.015546135573.63 schema:affiliation https://www.grid.ac/institutes/grid.412759.c
165 schema:familyName Hameed
166 schema:givenName Pathima Nusrath
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546135573.63
168 rdf:type schema:Person
169 sg:person.0776521010.41 schema:affiliation https://www.grid.ac/institutes/grid.1001.0
170 schema:familyName Halgamuge
171 schema:givenName Saman
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776521010.41
173 rdf:type schema:Person
174 sg:pub.10.1007/978-1-4939-0709-0_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049290278
175 https://doi.org/10.1007/978-1-4939-0709-0_14
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/978-3-642-97610-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033174751
178 https://doi.org/10.1007/978-3-642-97610-0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s40595-016-0086-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037743520
181 https://doi.org/10.1007/s40595-016-0086-9
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nbt1338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018811977
184 https://doi.org/10.1038/nbt1338
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmeth.1938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027280155
187 https://doi.org/10.1038/nmeth.1938
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/1471-2105-11-522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025848767
190 https://doi.org/10.1186/1471-2105-11-522
191 rdf:type schema:CreativeWork
192 sg:pub.10.1186/1471-2105-14-181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038043356
193 https://doi.org/10.1186/1471-2105-14-181
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/1471-2105-4-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013256259
196 https://doi.org/10.1186/1471-2105-4-2
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/1471-2105-9-215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003746243
199 https://doi.org/10.1186/1471-2105-9-215
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1752-0509-7-s3-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002339901
202 https://doi.org/10.1186/1752-0509-7-s3-s4
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/1752-0509-7-s5-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017196033
205 https://doi.org/10.1186/1752-0509-7-s5-s6
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/1758-2946-5-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845049
208 https://doi.org/10.1186/1758-2946-5-30
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/s12859-016-1118-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001833764
211 https://doi.org/10.1186/s12859-016-1118-2
212 rdf:type schema:CreativeWork
213 sg:pub.10.1186/s12918-016-0371-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013719366
214 https://doi.org/10.1186/s12918-016-0371-3
215 rdf:type schema:CreativeWork
216 https://app.dimensions.ai/details/publication/pub.1074765468 schema:CreativeWork
217 https://doi.org/10.1002/14651858.cd001944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049719804
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/pds.3346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032825493
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/0168-8227(91)90003-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1024074931
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/0377-0427(87)90125-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041584630
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.amjmed.2012.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034942940
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.artmed.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027543334
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.eswa.2010.02.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036578639
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.jbi.2014.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034042711
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.urolonc.2016.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020955679
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1021/ci400010x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055403126
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1038/msb.2009.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038070182
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1039/c3mb70490d schema:sameAs https://app.dimensions.ai/details/publication/pub.1014637717
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/annonc/mdw410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059394839
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/bib/bbr013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000546981
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bib/bbv020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016139510
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/bib/bbw048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413156
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/bib/bbw113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413204
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/bioinformatics/btg296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012441209
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/bioinformatics/btp465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050035736
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/bioinformatics/btq176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017011060
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/nar/30.7.1575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001067672
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/nar/gkh061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042802800
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/nar/gkh131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036547327
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/nar/gkh151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009187256
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/nar/gkm958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043603670
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/nar/gkp456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007164886
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1109/72.846732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219421
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1109/tnn.2005.845141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002360675
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1111/cbdd.12378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004037901
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1111/j.1749-6632.2010.05679.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000744892
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1126/science.1158140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000616962
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1136/amiajnl-2011-000214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009746599
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1136/amiajnl-2011-000699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035468936
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1136/bmjopen-2011-000076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010673582
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1161/01.hyp.0000203309.07140.d3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027045895
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1177/1074248413497257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019101085
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1371/journal.pcbi.1000385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014368479
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1371/journal.pcbi.1000662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021584122
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1371/journal.pcbi.1002323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040038059
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1371/journal.pone.0035254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016277496
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1586/14779072.5.3.491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038697314
298 rdf:type schema:CreativeWork
299 https://doi.org/10.2174/1568026616666160216153249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069195459
300 rdf:type schema:CreativeWork
301 https://doi.org/10.25103/jestr.105.03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092836931
302 rdf:type schema:CreativeWork
303 https://doi.org/10.4137/ebo.s12012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034247648
304 rdf:type schema:CreativeWork
305 https://www.grid.ac/institutes/grid.1001.0 schema:alternateName Australian National University
306 schema:name Research School of Engineering, College of Engineering & Computer Science, The Australian National University, 2601, Canberra, ACT, Australia
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
309 schema:name Department of Computing and Information Systems, University of Melbourne, Parkville, 3010, Melbourne, Australia
310 Department of Nursing, University of Melbourne, Parkville, 3010, Melbourne, Australia
311 The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3010, Melbourne, Australia
312 rdf:type schema:Organization
313 https://www.grid.ac/institutes/grid.412759.c schema:alternateName University of Ruhuna
314 schema:name Data61, Victoria Research Lab, 3003, West Melbourne, Australia
315 Department of Computer Science, University of Ruhuna, 81000, Matara, Sri Lanka
316 Department of Mechanical Engineering, University of Melbourne, Parkville, 3010, Melbourne, Australia
317 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...