Better ILP models for haplotype assembly View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-19

AUTHORS

Maryam Etemadi, Mehri Bagherian, Zhi-Zhong Chen, Lusheng Wang

ABSTRACT

BackgroundThe haplotype assembly problem for diploid is to find a pair of haplotypes from a given set of aligned Single Nucleotide Polymorphism (SNP) fragments (reads). It has many applications in association studies, drug design, and genetic research. Since this problem is computationally hard, both heuristic and exact algorithms have been designed for it. Although exact algorithms are much slower, they are still of great interest because they usually output significantly better solutions than heuristic algorithms in terms of popular measures such as the Minimum Error Correction (MEC) score, the number of switch errors, and the QAN50 score. Exact algorithms are also valuable because they can be used to witness how good a heuristic algorithm is. The best known exact algorithm is based on integer linear programming (ILP) and it is known that ILP can also be used to improve the output quality of every heuristic algorithm with a little decline in speed. Therefore, faster ILP models for the problem are highly demanded.ResultsAs in previous studies, we consider not only the general case of the problem but also its all-heterozygous case where we assume that if a column of the input read matrix contains at least one 0 and one 1, then it corresponds to a heterozygous SNP site. For both cases, we design new ILP models for the haplotype assembly problem which aim at minimizing the MEC score. The new models are theoretically better because they contain significantly fewer constraints. More importantly, our experimental results show that for both simulated and real datasets, the new model for the all-heterozygous (respectively, general) case can usually be solved via CPLEX (an ILP solver) at least 5 times (respectively, twice) faster than the previous bests. Indeed, the running time can sometimes be 41 times better.ConclusionsThis paper proposes a new ILP model for the haplotype assembly problem and its all-heterozygous case, respectively. Experiments with both real and simulated datasets show that the new models can be solved within much shorter time by CPLEX than the previous bests. We believe that the models can be used to improve heuristic algorithms as well. More... »

PAGES

52

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-018-2012-x

DOI

http://dx.doi.org/10.1186/s12859-018-2012-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101116794

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29504891


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heterozygote", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Programming, Linear", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, 41938-33697, Rasht, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411872.9", 
          "name": [
            "Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, 41938-33697, Rasht, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etemadi", 
        "givenName": "Maryam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, 41938-33697, Rasht, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411872.9", 
          "name": [
            "Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, 41938-33697, Rasht, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bagherian", 
        "givenName": "Mehri", 
        "id": "sg:person.010227623665.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010227623665.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412773.4", 
          "name": [
            "Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhi-Zhong", 
        "id": "sg:person.015654265661.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong Shenzhen Research Institute, ShenzhenHi-TechIndustrialPark, Nanshan District, Shenzhen, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.464255.4", 
          "name": [
            "Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong", 
            "City University of Hong Kong Shenzhen Research Institute, ShenzhenHi-TechIndustrialPark, Nanshan District, Shenzhen, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lusheng", 
        "id": "sg:person.01105113721.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/11557067_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022773764", 
          "https://doi.org/10.1007/11557067_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44676-1_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028578523", 
          "https://doi.org/10.1007/3-540-44676-1_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-015-1408-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005621335", 
          "https://doi.org/10.1186/s12864-015-1408-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038401461", 
          "https://doi.org/10.1038/ng.2673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-4-r42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097093", 
          "https://doi.org/10.1186/gb-2009-10-4-r42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30219-3_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030350549", 
          "https://doi.org/10.1007/978-3-540-30219-3_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003980483", 
          "https://doi.org/10.1038/nbt.3200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973203", 
          "https://doi.org/10.1038/10290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13258-015-0342-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008043767", 
          "https://doi.org/10.1007/s13258-015-0342-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011881979", 
          "https://doi.org/10.1038/10297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0651-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027581361", 
          "https://doi.org/10.1186/s12859-015-0651-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-19929-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041097376", 
          "https://doi.org/10.1007/978-3-319-19929-0_9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-19", 
    "datePublishedReg": "2018-02-19", 
    "description": "BackgroundThe haplotype assembly problem for diploid is to find a pair of haplotypes from a given set of aligned Single Nucleotide Polymorphism (SNP) fragments (reads). It has many applications in association studies, drug design, and genetic research. Since this problem is computationally hard, both heuristic and exact algorithms have been designed for it. Although exact algorithms are much slower, they are still of great interest because they usually output significantly better solutions than heuristic algorithms in terms of popular measures such as the Minimum Error Correction (MEC) score, the number of switch errors, and the QAN50 score. Exact algorithms are also valuable because they can be used to witness how good a heuristic algorithm is. The best known exact algorithm is based on integer linear programming (ILP) and it is known that ILP can also be used to improve the output quality of every heuristic algorithm with a little decline in speed. Therefore, faster ILP models for the problem are highly demanded.ResultsAs in previous studies, we consider not only the general case of the problem but also its all-heterozygous case where we assume that if a column of the input read matrix contains at least one 0 and one 1, then it corresponds to a heterozygous SNP site. For both cases, we design new ILP models for the haplotype assembly problem which aim at minimizing the MEC score. The new models are theoretically better because they contain significantly fewer constraints. More importantly, our experimental results show that for both simulated and real datasets, the new model for the all-heterozygous (respectively, general) case can usually be solved via CPLEX (an ILP solver) at least 5 times (respectively, twice) faster than the previous bests. Indeed, the running time can sometimes be 41 times better.ConclusionsThis paper proposes a new ILP model for the haplotype assembly problem and its all-heterozygous case, respectively. Experiments with both real and simulated datasets show that the new models can be solved within much shorter time by CPLEX than the previous bests. We believe that the models can be used to improve heuristic algorithms as well.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12859-018-2012-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8293592", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7426977", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "haplotype assembly problem", 
      "integer linear programming", 
      "heuristic algorithm", 
      "ILP model", 
      "new ILP model", 
      "exact algorithm", 
      "previous bests", 
      "assembly problem", 
      "single nucleotide polymorphism (SNP) fragments", 
      "real datasets", 
      "running time", 
      "pair of haplotypes", 
      "best solution", 
      "algorithm", 
      "output quality", 
      "haplotype assembly", 
      "simulated dataset", 
      "linear programming", 
      "new model", 
      "experimental results", 
      "dataset", 
      "CPLEX", 
      "switch errors", 
      "programming", 
      "general case", 
      "model", 
      "popular measure", 
      "short time", 
      "constraints", 
      "set", 
      "applications", 
      "input", 
      "time", 
      "error", 
      "BEST", 
      "MEC score", 
      "design", 
      "speed", 
      "great interest", 
      "solution", 
      "quality", 
      "drug design", 
      "experiments", 
      "research", 
      "interest", 
      "terms", 
      "number", 
      "cases", 
      "results", 
      "pairs", 
      "matrix", 
      "ConclusionsThis paper", 
      "measures", 
      "correction scores", 
      "SNP sites", 
      "scores", 
      "heterozygous cases", 
      "previous studies", 
      "study", 
      "assembly", 
      "little decline", 
      "genetic research", 
      "association studies", 
      "sites", 
      "fragments", 
      "column", 
      "haplotypes", 
      "problem", 
      "decline", 
      "paper", 
      "diploid", 
      "polymorphism fragments"
    ], 
    "name": "Better ILP models for haplotype assembly", 
    "pagination": "52", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101116794"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-018-2012-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29504891"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-018-2012-x", 
      "https://app.dimensions.ai/details/publication/pub.1101116794"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_769.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12859-018-2012-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2012-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2012-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2012-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-018-2012-x'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      22 PREDICATES      117 URIs      97 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-018-2012-x schema:about N2cff445596584286a6dde47b1a7a8437
2 N67a36a3dc4a84127a2bfdce2bcee3faf
3 N6c8861a95a4d48e2913913f5acee299a
4 N8f04525a186947e78c2652e129a10cba
5 Nc49c9ba91bdb4dc380ca7726ea93e1b6
6 Nd6d049b5662d4d13b700f9dc24b943bf
7 Ndbe56602006d41de9fa601bfad4f9760
8 anzsrc-for:08
9 anzsrc-for:0802
10 schema:author Nb94ceecacf2e45b69b2a616a857f3ad2
11 schema:citation sg:pub.10.1007/11557067_11
12 sg:pub.10.1007/3-540-44676-1_15
13 sg:pub.10.1007/978-3-319-19929-0_9
14 sg:pub.10.1007/978-3-540-30219-3_23
15 sg:pub.10.1007/s13258-015-0342-x
16 sg:pub.10.1038/10290
17 sg:pub.10.1038/10297
18 sg:pub.10.1038/nbt.3200
19 sg:pub.10.1038/ng.2673
20 sg:pub.10.1186/gb-2009-10-4-r42
21 sg:pub.10.1186/s12859-015-0651-8
22 sg:pub.10.1186/s12864-015-1408-5
23 schema:datePublished 2018-02-19
24 schema:datePublishedReg 2018-02-19
25 schema:description BackgroundThe haplotype assembly problem for diploid is to find a pair of haplotypes from a given set of aligned Single Nucleotide Polymorphism (SNP) fragments (reads). It has many applications in association studies, drug design, and genetic research. Since this problem is computationally hard, both heuristic and exact algorithms have been designed for it. Although exact algorithms are much slower, they are still of great interest because they usually output significantly better solutions than heuristic algorithms in terms of popular measures such as the Minimum Error Correction (MEC) score, the number of switch errors, and the QAN50 score. Exact algorithms are also valuable because they can be used to witness how good a heuristic algorithm is. The best known exact algorithm is based on integer linear programming (ILP) and it is known that ILP can also be used to improve the output quality of every heuristic algorithm with a little decline in speed. Therefore, faster ILP models for the problem are highly demanded.ResultsAs in previous studies, we consider not only the general case of the problem but also its all-heterozygous case where we assume that if a column of the input read matrix contains at least one 0 and one 1, then it corresponds to a heterozygous SNP site. For both cases, we design new ILP models for the haplotype assembly problem which aim at minimizing the MEC score. The new models are theoretically better because they contain significantly fewer constraints. More importantly, our experimental results show that for both simulated and real datasets, the new model for the all-heterozygous (respectively, general) case can usually be solved via CPLEX (an ILP solver) at least 5 times (respectively, twice) faster than the previous bests. Indeed, the running time can sometimes be 41 times better.ConclusionsThis paper proposes a new ILP model for the haplotype assembly problem and its all-heterozygous case, respectively. Experiments with both real and simulated datasets show that the new models can be solved within much shorter time by CPLEX than the previous bests. We believe that the models can be used to improve heuristic algorithms as well.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N9407d58ff9744c6ca85ba67b713f2317
30 Nf2002b8eeaf34de7b8ad70e0d857d351
31 sg:journal.1023786
32 schema:keywords BEST
33 CPLEX
34 ConclusionsThis paper
35 ILP model
36 MEC score
37 SNP sites
38 algorithm
39 applications
40 assembly
41 assembly problem
42 association studies
43 best solution
44 cases
45 column
46 constraints
47 correction scores
48 dataset
49 decline
50 design
51 diploid
52 drug design
53 error
54 exact algorithm
55 experimental results
56 experiments
57 fragments
58 general case
59 genetic research
60 great interest
61 haplotype assembly
62 haplotype assembly problem
63 haplotypes
64 heterozygous cases
65 heuristic algorithm
66 input
67 integer linear programming
68 interest
69 linear programming
70 little decline
71 matrix
72 measures
73 model
74 new ILP model
75 new model
76 number
77 output quality
78 pair of haplotypes
79 pairs
80 paper
81 polymorphism fragments
82 popular measure
83 previous bests
84 previous studies
85 problem
86 programming
87 quality
88 real datasets
89 research
90 results
91 running time
92 scores
93 set
94 short time
95 simulated dataset
96 single nucleotide polymorphism (SNP) fragments
97 sites
98 solution
99 speed
100 study
101 switch errors
102 terms
103 time
104 schema:name Better ILP models for haplotype assembly
105 schema:pagination 52
106 schema:productId Ne134970e88d840679687865640dc946b
107 Nee713e5fcc754a549115b19c19289f5f
108 Nfb50962afa60430694d37f7111402afe
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101116794
110 https://doi.org/10.1186/s12859-018-2012-x
111 schema:sdDatePublished 2022-05-20T07:34
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N90cc818ccdf04952b641c8542839478f
114 schema:url https://doi.org/10.1186/s12859-018-2012-x
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N2cff445596584286a6dde47b1a7a8437 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Heterozygote
120 rdf:type schema:DefinedTerm
121 N3f674fe80f964865ae927dba85976b84 rdf:first sg:person.015654265661.98
122 rdf:rest Nad653b5840e34b0182c626bd2a8a7f7a
123 N67a36a3dc4a84127a2bfdce2bcee3faf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Polymorphism, Single Nucleotide
125 rdf:type schema:DefinedTerm
126 N6c8861a95a4d48e2913913f5acee299a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Haplotypes
128 rdf:type schema:DefinedTerm
129 N8f04525a186947e78c2652e129a10cba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Models, Genetic
131 rdf:type schema:DefinedTerm
132 N90cc818ccdf04952b641c8542839478f schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N9407d58ff9744c6ca85ba67b713f2317 schema:issueNumber Suppl 1
135 rdf:type schema:PublicationIssue
136 Nad653b5840e34b0182c626bd2a8a7f7a rdf:first sg:person.01105113721.52
137 rdf:rest rdf:nil
138 Nb94ceecacf2e45b69b2a616a857f3ad2 rdf:first Ne89ff83f348745c5bc67278fad8a460a
139 rdf:rest Nb99372ec0da349a7baf15d5005f63f80
140 Nb99372ec0da349a7baf15d5005f63f80 rdf:first sg:person.010227623665.36
141 rdf:rest N3f674fe80f964865ae927dba85976b84
142 Nc49c9ba91bdb4dc380ca7726ea93e1b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 Nd6d049b5662d4d13b700f9dc24b943bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Algorithms
147 rdf:type schema:DefinedTerm
148 Ndbe56602006d41de9fa601bfad4f9760 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Programming, Linear
150 rdf:type schema:DefinedTerm
151 Ne134970e88d840679687865640dc946b schema:name dimensions_id
152 schema:value pub.1101116794
153 rdf:type schema:PropertyValue
154 Ne89ff83f348745c5bc67278fad8a460a schema:affiliation grid-institutes:grid.411872.9
155 schema:familyName Etemadi
156 schema:givenName Maryam
157 rdf:type schema:Person
158 Nee713e5fcc754a549115b19c19289f5f schema:name doi
159 schema:value 10.1186/s12859-018-2012-x
160 rdf:type schema:PropertyValue
161 Nf2002b8eeaf34de7b8ad70e0d857d351 schema:volumeNumber 19
162 rdf:type schema:PublicationVolume
163 Nfb50962afa60430694d37f7111402afe schema:name pubmed_id
164 schema:value 29504891
165 rdf:type schema:PropertyValue
166 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
167 schema:name Information and Computing Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
170 schema:name Computation Theory and Mathematics
171 rdf:type schema:DefinedTerm
172 sg:grant.7426977 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-018-2012-x
173 rdf:type schema:MonetaryGrant
174 sg:grant.8293592 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-018-2012-x
175 rdf:type schema:MonetaryGrant
176 sg:journal.1023786 schema:issn 1471-2105
177 schema:name BMC Bioinformatics
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.010227623665.36 schema:affiliation grid-institutes:grid.411872.9
181 schema:familyName Bagherian
182 schema:givenName Mehri
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010227623665.36
184 rdf:type schema:Person
185 sg:person.01105113721.52 schema:affiliation grid-institutes:grid.464255.4
186 schema:familyName Wang
187 schema:givenName Lusheng
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52
189 rdf:type schema:Person
190 sg:person.015654265661.98 schema:affiliation grid-institutes:grid.412773.4
191 schema:familyName Chen
192 schema:givenName Zhi-Zhong
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98
194 rdf:type schema:Person
195 sg:pub.10.1007/11557067_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022773764
196 https://doi.org/10.1007/11557067_11
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/3-540-44676-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028578523
199 https://doi.org/10.1007/3-540-44676-1_15
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/978-3-319-19929-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041097376
202 https://doi.org/10.1007/978-3-319-19929-0_9
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/978-3-540-30219-3_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030350549
205 https://doi.org/10.1007/978-3-540-30219-3_23
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s13258-015-0342-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008043767
208 https://doi.org/10.1007/s13258-015-0342-x
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973203
211 https://doi.org/10.1038/10290
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/10297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011881979
214 https://doi.org/10.1038/10297
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nbt.3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003980483
217 https://doi.org/10.1038/nbt.3200
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/ng.2673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038401461
220 https://doi.org/10.1038/ng.2673
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/gb-2009-10-4-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097093
223 https://doi.org/10.1186/gb-2009-10-4-r42
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/s12859-015-0651-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027581361
226 https://doi.org/10.1186/s12859-015-0651-8
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/s12864-015-1408-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005621335
229 https://doi.org/10.1186/s12864-015-1408-5
230 rdf:type schema:CreativeWork
231 grid-institutes:grid.411872.9 schema:alternateName Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, 41938-33697, Rasht, Iran
232 schema:name Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, 41938-33697, Rasht, Iran
233 rdf:type schema:Organization
234 grid-institutes:grid.412773.4 schema:alternateName Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Japan
235 schema:name Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Japan
236 rdf:type schema:Organization
237 grid-institutes:grid.464255.4 schema:alternateName City University of Hong Kong Shenzhen Research Institute, ShenzhenHi-TechIndustrialPark, Nanshan District, Shenzhen, People’s Republic of China
238 schema:name City University of Hong Kong Shenzhen Research Institute, ShenzhenHi-TechIndustrialPark, Nanshan District, Shenzhen, People’s Republic of China
239 Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...