Cell type discovery and representation in the era of high-content single cell phenotyping View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Trygve Bakken, Lindsay Cowell, Brian D. Aevermann, Mark Novotny, Rebecca Hodge, Jeremy A. Miller, Alexandra Lee, Ivan Chang, Jamison McCorrison, Bali Pulendran, Yu Qian, Nicholas J. Schork, Roger S. Lasken, Ed S. Lein, Richard H. Scheuermann

ABSTRACT

BACKGROUND: A fundamental characteristic of multicellular organisms is the specialization of functional cell types through the process of differentiation. These specialized cell types not only characterize the normal functioning of different organs and tissues, they can also be used as cellular biomarkers of a variety of different disease states and therapeutic/vaccine responses. In order to serve as a reference for cell type representation, the Cell Ontology has been developed to provide a standard nomenclature of defined cell types for comparative analysis and biomarker discovery. Historically, these cell types have been defined based on unique cellular shapes and structures, anatomic locations, and marker protein expression. However, we are now experiencing a revolution in cellular characterization resulting from the application of new high-throughput, high-content cytometry and sequencing technologies. The resulting explosion in the number of distinct cell types being identified is challenging the current paradigm for cell type definition in the Cell Ontology. RESULTS: In this paper, we provide examples of state-of-the-art cellular biomarker characterization using high-content cytometry and single cell RNA sequencing, and present strategies for standardized cell type representations based on the data outputs from these cutting-edge technologies, including "context annotations" in the form of standardized experiment metadata about the specimen source analyzed and marker genes that serve as the most useful features in machine learning-based cell type classification models. We also propose a statistical strategy for comparing new experiment data to these standardized cell type representations. CONCLUSION: The advent of high-throughput/high-content single cell technologies is leading to an explosion in the number of distinct cell types being identified. It will be critical for the bioinformatics community to develop and adopt data standard conventions that will be compatible with these new technologies and support the data representation needs of the research community. The proposals enumerated here will serve as a useful starting point to address these challenges. More... »

PAGES

559

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-017-1977-1

DOI

http://dx.doi.org/10.1186/s12859-017-1977-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099746609

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29322913


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Allen Institute for Brain Science", 
          "id": "https://www.grid.ac/institutes/grid.417881.3", 
          "name": [
            "Allen Institute for Brain Science, Seattle, 98103, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakken", 
        "givenName": "Trygve", 
        "id": "sg:person.0766574233.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766574233.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cowell", 
        "givenName": "Lindsay", 
        "id": "sg:person.01311343415.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311343415.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aevermann", 
        "givenName": "Brian D.", 
        "id": "sg:person.01232377073.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232377073.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novotny", 
        "givenName": "Mark", 
        "id": "sg:person.01120137022.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120137022.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Allen Institute for Brain Science", 
          "id": "https://www.grid.ac/institutes/grid.417881.3", 
          "name": [
            "Allen Institute for Brain Science, Seattle, 98103, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodge", 
        "givenName": "Rebecca", 
        "id": "sg:person.0636230636.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636230636.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Allen Institute for Brain Science", 
          "id": "https://www.grid.ac/institutes/grid.417881.3", 
          "name": [
            "Allen Institute for Brain Science, Seattle, 98103, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Jeremy A.", 
        "id": "sg:person.01016772265.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016772265.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Alexandra", 
        "id": "sg:person.012210243160.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012210243160.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Ivan", 
        "id": "sg:person.012745256123.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745256123.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCorrison", 
        "givenName": "Jamison", 
        "id": "sg:person.01062601220.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062601220.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Department of Pathology and Laboratory Medicine, Emory University, 201 Dowman Dr, 30322, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pulendran", 
        "givenName": "Bali", 
        "id": "sg:person.01110274346.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110274346.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Yu", 
        "id": "sg:person.01220534445.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220534445.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schork", 
        "givenName": "Nicholas J.", 
        "id": "sg:person.016705441477.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705441477.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lasken", 
        "givenName": "Roger S.", 
        "id": "sg:person.01246341013.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246341013.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Allen Institute for Brain Science", 
          "id": "https://www.grid.ac/institutes/grid.417881.3", 
          "name": [
            "Allen Institute for Brain Science, Seattle, 98103, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lein", 
        "givenName": "Ed S.", 
        "id": "sg:person.013277307467.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013277307467.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA", 
            "Department of Pathology, University of California San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheuermann", 
        "givenName": "Richard H.", 
        "id": "sg:person.0652414675.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652414675.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt.1411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002107134", 
          "https://doi.org/10.1038/nbt.1411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13326-016-0088-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002920787", 
          "https://doi.org/10.1186/s13326-016-0088-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13326-016-0088-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002920787", 
          "https://doi.org/10.1186/s13326-016-0088-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.b.20554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004867897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.b.20554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004867897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021552803", 
          "https://doi.org/10.1186/1471-2105-11-441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021552803", 
          "https://doi.org/10.1186/1471-2105-11-441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022158752", 
          "https://doi.org/10.1038/nature12787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2010.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bav010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026572156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001312", 
          "https://doi.org/10.1038/nbt1346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029730025", 
          "https://doi.org/10.1186/1471-2105-10-70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep20686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032349828", 
          "https://doi.org/10.1038/srep20686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033063848", 
          "https://doi.org/10.1186/1471-2105-12-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033394588", 
          "https://doi.org/10.1038/nmeth.1580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0154556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036819240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0154556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036819240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npre.2011.5292.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037286821", 
          "https://doi.org/10.1038/npre.2011.5292.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bar046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040643481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12026-014-8516-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041222016", 
          "https://doi.org/10.1007/s12026-014-8516-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043761275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048119272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-2-r21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049164817", 
          "https://doi.org/10.1186/gb-2005-6-2-r21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.22735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051439719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aah4573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085037473"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: A fundamental characteristic of multicellular organisms is the specialization of functional cell types through the process of differentiation. These specialized cell types not only characterize the normal functioning of different organs and tissues, they can also be used as cellular biomarkers of a variety of different disease states and therapeutic/vaccine responses. In order to serve as a reference for cell type representation, the Cell Ontology has been developed to provide a standard nomenclature of defined cell types for comparative analysis and biomarker discovery. Historically, these cell types have been defined based on unique cellular shapes and structures, anatomic locations, and marker protein expression. However, we are now experiencing a revolution in cellular characterization resulting from the application of new high-throughput, high-content cytometry and sequencing technologies. The resulting explosion in the number of distinct cell types being identified is challenging the current paradigm for cell type definition in the Cell Ontology.\nRESULTS: In this paper, we provide examples of state-of-the-art cellular biomarker characterization using high-content cytometry and single cell RNA sequencing, and present strategies for standardized cell type representations based on the data outputs from these cutting-edge technologies, including \"context annotations\" in the form of standardized experiment metadata about the specimen source analyzed and marker genes that serve as the most useful features in machine learning-based cell type classification models. We also propose a statistical strategy for comparing new experiment data to these standardized cell type representations.\nCONCLUSION: The advent of high-throughput/high-content single cell technologies is leading to an explosion in the number of distinct cell types being identified. It will be critical for the bioinformatics community to develop and adopt data standard conventions that will be compatible with these new technologies and support the data representation needs of the research community. The proposals enumerated here will serve as a useful starting point to address these challenges.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-017-1977-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6849459", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7026364", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5476566", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2695875", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4102519", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 17", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Cell type discovery and representation in the era of high-content single cell phenotyping", 
    "pagination": "559", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d987e9badb4472116b71000005941cd26c564f45509fa404b539483e41692250"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29322913"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-017-1977-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099746609"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-017-1977-1", 
      "https://app.dimensions.ai/details/publication/pub.1099746609"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s12859-017-1977-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1977-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1977-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1977-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1977-1'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-017-1977-1 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Ne90a9eb7c86f4573953acd4fb246e4a4
4 schema:citation sg:pub.10.1007/s12026-014-8516-1
5 sg:pub.10.1038/nature12787
6 sg:pub.10.1038/nbt.1411
7 sg:pub.10.1038/nbt1346
8 sg:pub.10.1038/nmeth.1580
9 sg:pub.10.1038/npre.2011.5292.2
10 sg:pub.10.1038/srep20686
11 sg:pub.10.1186/1471-2105-10-70
12 sg:pub.10.1186/1471-2105-11-441
13 sg:pub.10.1186/1471-2105-12-6
14 sg:pub.10.1186/gb-2005-6-2-r21
15 sg:pub.10.1186/s13326-016-0088-7
16 https://doi.org/10.1002/cyto.a.22735
17 https://doi.org/10.1002/cyto.b.20554
18 https://doi.org/10.1016/j.cell.2016.04.019
19 https://doi.org/10.1016/j.jbi.2010.01.006
20 https://doi.org/10.1093/bioinformatics/btu807
21 https://doi.org/10.1093/database/bar046
22 https://doi.org/10.1093/database/bav010
23 https://doi.org/10.1126/science.aah4573
24 https://doi.org/10.1371/journal.pone.0154556
25 schema:datePublished 2017-12
26 schema:datePublishedReg 2017-12-01
27 schema:description BACKGROUND: A fundamental characteristic of multicellular organisms is the specialization of functional cell types through the process of differentiation. These specialized cell types not only characterize the normal functioning of different organs and tissues, they can also be used as cellular biomarkers of a variety of different disease states and therapeutic/vaccine responses. In order to serve as a reference for cell type representation, the Cell Ontology has been developed to provide a standard nomenclature of defined cell types for comparative analysis and biomarker discovery. Historically, these cell types have been defined based on unique cellular shapes and structures, anatomic locations, and marker protein expression. However, we are now experiencing a revolution in cellular characterization resulting from the application of new high-throughput, high-content cytometry and sequencing technologies. The resulting explosion in the number of distinct cell types being identified is challenging the current paradigm for cell type definition in the Cell Ontology. RESULTS: In this paper, we provide examples of state-of-the-art cellular biomarker characterization using high-content cytometry and single cell RNA sequencing, and present strategies for standardized cell type representations based on the data outputs from these cutting-edge technologies, including "context annotations" in the form of standardized experiment metadata about the specimen source analyzed and marker genes that serve as the most useful features in machine learning-based cell type classification models. We also propose a statistical strategy for comparing new experiment data to these standardized cell type representations. CONCLUSION: The advent of high-throughput/high-content single cell technologies is leading to an explosion in the number of distinct cell types being identified. It will be critical for the bioinformatics community to develop and adopt data standard conventions that will be compatible with these new technologies and support the data representation needs of the research community. The proposals enumerated here will serve as a useful starting point to address these challenges.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N9150a0bd10b244d9aaeaec6673db5f4a
32 Na17cb8bd464746f2997bfa1a7d721352
33 sg:journal.1023786
34 schema:name Cell type discovery and representation in the era of high-content single cell phenotyping
35 schema:pagination 559
36 schema:productId N3ac1b100e5394d74b99410fc74b56000
37 N49063bad261147de9fad12d24c5222ac
38 N5bb8a5ee9ec748448d29c6cf361994cd
39 N729b27f8162a4c97bc9a0e7f9b811a9f
40 N8f94927331354fa48621df9b34f4b8cd
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099746609
42 https://doi.org/10.1186/s12859-017-1977-1
43 schema:sdDatePublished 2019-04-10T21:46
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nb60c703964ee42cd9187f30d990a15e5
46 schema:url http://link.springer.com/10.1186/s12859-017-1977-1
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0bdcfacd2cdc4e57b9a676e848d7803e rdf:first sg:person.013277307467.70
51 rdf:rest N4fa86e8489b9447e96f10b35c7c58b4c
52 N303beb628fdb4c1d80da0c25c5d51f4a rdf:first sg:person.016705441477.03
53 rdf:rest N9e4404ae9b434b03901eac5ec1e4db5e
54 N3ac1b100e5394d74b99410fc74b56000 schema:name readcube_id
55 schema:value d987e9badb4472116b71000005941cd26c564f45509fa404b539483e41692250
56 rdf:type schema:PropertyValue
57 N461cc333e81b413d8d4cb70476eabff0 rdf:first sg:person.01062601220.67
58 rdf:rest N873414ee6f1a48d38430dfd2c5d2471f
59 N49063bad261147de9fad12d24c5222ac schema:name dimensions_id
60 schema:value pub.1099746609
61 rdf:type schema:PropertyValue
62 N4f567838a0854d399f0acd581f2701d1 rdf:first sg:person.01120137022.43
63 rdf:rest Na333279e19ad475eaf047be0c4739e6e
64 N4fa86e8489b9447e96f10b35c7c58b4c rdf:first sg:person.0652414675.71
65 rdf:rest rdf:nil
66 N5bb8a5ee9ec748448d29c6cf361994cd schema:name doi
67 schema:value 10.1186/s12859-017-1977-1
68 rdf:type schema:PropertyValue
69 N729b27f8162a4c97bc9a0e7f9b811a9f schema:name pubmed_id
70 schema:value 29322913
71 rdf:type schema:PropertyValue
72 N873414ee6f1a48d38430dfd2c5d2471f rdf:first sg:person.01110274346.79
73 rdf:rest Na57a07f3c6194eaba3dc08c8d43ee487
74 N8a3e380f25f84c83bf5d6dce2e147417 rdf:first sg:person.01311343415.15
75 rdf:rest Na1a58dd58a644433a58eb6aecfa5372e
76 N8f94927331354fa48621df9b34f4b8cd schema:name nlm_unique_id
77 schema:value 100965194
78 rdf:type schema:PropertyValue
79 N9150a0bd10b244d9aaeaec6673db5f4a schema:issueNumber Suppl 17
80 rdf:type schema:PublicationIssue
81 N958f679014f9427ba986307b0af3d3c5 rdf:first sg:person.01016772265.00
82 rdf:rest Nbdef102b24674b96a6b8dfe11f747c8d
83 N9e4404ae9b434b03901eac5ec1e4db5e rdf:first sg:person.01246341013.29
84 rdf:rest N0bdcfacd2cdc4e57b9a676e848d7803e
85 Na17cb8bd464746f2997bfa1a7d721352 schema:volumeNumber 18
86 rdf:type schema:PublicationVolume
87 Na1a58dd58a644433a58eb6aecfa5372e rdf:first sg:person.01232377073.95
88 rdf:rest N4f567838a0854d399f0acd581f2701d1
89 Na333279e19ad475eaf047be0c4739e6e rdf:first sg:person.0636230636.87
90 rdf:rest N958f679014f9427ba986307b0af3d3c5
91 Na57a07f3c6194eaba3dc08c8d43ee487 rdf:first sg:person.01220534445.43
92 rdf:rest N303beb628fdb4c1d80da0c25c5d51f4a
93 Nb60c703964ee42cd9187f30d990a15e5 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nbdef102b24674b96a6b8dfe11f747c8d rdf:first sg:person.012210243160.77
96 rdf:rest Ncfcde057e69341b18df6bf87e12d49bf
97 Ncfcde057e69341b18df6bf87e12d49bf rdf:first sg:person.012745256123.53
98 rdf:rest N461cc333e81b413d8d4cb70476eabff0
99 Ne90a9eb7c86f4573953acd4fb246e4a4 rdf:first sg:person.0766574233.30
100 rdf:rest N8a3e380f25f84c83bf5d6dce2e147417
101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biological Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
105 schema:name Biochemistry and Cell Biology
106 rdf:type schema:DefinedTerm
107 sg:grant.2695875 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1977-1
108 rdf:type schema:MonetaryGrant
109 sg:grant.4102519 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1977-1
110 rdf:type schema:MonetaryGrant
111 sg:grant.5476566 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1977-1
112 rdf:type schema:MonetaryGrant
113 sg:grant.6849459 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1977-1
114 rdf:type schema:MonetaryGrant
115 sg:grant.7026364 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1977-1
116 rdf:type schema:MonetaryGrant
117 sg:journal.1023786 schema:issn 1471-2105
118 schema:name BMC Bioinformatics
119 rdf:type schema:Periodical
120 sg:person.01016772265.00 schema:affiliation https://www.grid.ac/institutes/grid.417881.3
121 schema:familyName Miller
122 schema:givenName Jeremy A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016772265.00
124 rdf:type schema:Person
125 sg:person.01062601220.67 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
126 schema:familyName McCorrison
127 schema:givenName Jamison
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062601220.67
129 rdf:type schema:Person
130 sg:person.01110274346.79 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
131 schema:familyName Pulendran
132 schema:givenName Bali
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110274346.79
134 rdf:type schema:Person
135 sg:person.01120137022.43 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
136 schema:familyName Novotny
137 schema:givenName Mark
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120137022.43
139 rdf:type schema:Person
140 sg:person.01220534445.43 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
141 schema:familyName Qian
142 schema:givenName Yu
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220534445.43
144 rdf:type schema:Person
145 sg:person.012210243160.77 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
146 schema:familyName Lee
147 schema:givenName Alexandra
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012210243160.77
149 rdf:type schema:Person
150 sg:person.01232377073.95 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
151 schema:familyName Aevermann
152 schema:givenName Brian D.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232377073.95
154 rdf:type schema:Person
155 sg:person.01246341013.29 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
156 schema:familyName Lasken
157 schema:givenName Roger S.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246341013.29
159 rdf:type schema:Person
160 sg:person.012745256123.53 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
161 schema:familyName Chang
162 schema:givenName Ivan
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745256123.53
164 rdf:type schema:Person
165 sg:person.01311343415.15 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
166 schema:familyName Cowell
167 schema:givenName Lindsay
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311343415.15
169 rdf:type schema:Person
170 sg:person.013277307467.70 schema:affiliation https://www.grid.ac/institutes/grid.417881.3
171 schema:familyName Lein
172 schema:givenName Ed S.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013277307467.70
174 rdf:type schema:Person
175 sg:person.016705441477.03 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
176 schema:familyName Schork
177 schema:givenName Nicholas J.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705441477.03
179 rdf:type schema:Person
180 sg:person.0636230636.87 schema:affiliation https://www.grid.ac/institutes/grid.417881.3
181 schema:familyName Hodge
182 schema:givenName Rebecca
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636230636.87
184 rdf:type schema:Person
185 sg:person.0652414675.71 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
186 schema:familyName Scheuermann
187 schema:givenName Richard H.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652414675.71
189 rdf:type schema:Person
190 sg:person.0766574233.30 schema:affiliation https://www.grid.ac/institutes/grid.417881.3
191 schema:familyName Bakken
192 schema:givenName Trygve
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766574233.30
194 rdf:type schema:Person
195 sg:pub.10.1007/s12026-014-8516-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041222016
196 https://doi.org/10.1007/s12026-014-8516-1
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
199 https://doi.org/10.1038/nature12787
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nbt.1411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002107134
202 https://doi.org/10.1038/nbt.1411
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
205 https://doi.org/10.1038/nbt1346
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nmeth.1580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033394588
208 https://doi.org/10.1038/nmeth.1580
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/npre.2011.5292.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037286821
211 https://doi.org/10.1038/npre.2011.5292.2
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/srep20686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032349828
214 https://doi.org/10.1038/srep20686
215 rdf:type schema:CreativeWork
216 sg:pub.10.1186/1471-2105-10-70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029730025
217 https://doi.org/10.1186/1471-2105-10-70
218 rdf:type schema:CreativeWork
219 sg:pub.10.1186/1471-2105-11-441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021552803
220 https://doi.org/10.1186/1471-2105-11-441
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/1471-2105-12-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033063848
223 https://doi.org/10.1186/1471-2105-12-6
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/gb-2005-6-2-r21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049164817
226 https://doi.org/10.1186/gb-2005-6-2-r21
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/s13326-016-0088-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002920787
229 https://doi.org/10.1186/s13326-016-0088-7
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/cyto.a.22735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051439719
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1002/cyto.b.20554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004867897
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.cell.2016.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043761275
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.jbi.2010.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042263
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/bioinformatics/btu807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048119272
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/database/bar046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040643481
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/database/bav010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026572156
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1126/science.aah4573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085037473
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1371/journal.pone.0154556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036819240
248 rdf:type schema:CreativeWork
249 https://www.grid.ac/institutes/grid.189967.8 schema:alternateName Emory University
250 schema:name Department of Pathology and Laboratory Medicine, Emory University, 201 Dowman Dr, 30322, Atlanta, GA, USA
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
253 schema:name Department of Pathology, University of California San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
254 J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.267313.2 schema:alternateName The University of Texas Southwestern Medical Center
257 schema:name Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.417881.3 schema:alternateName Allen Institute for Brain Science
260 schema:name Allen Institute for Brain Science, Seattle, 98103, Washington, USA
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.469946.0 schema:alternateName J. Craig Venter Institute
263 schema:name J. Craig Venter Institute, 4120 Capricorn Lane, 92037, La Jolla, CA, USA
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...