ATria: a novel centrality algorithm applied to biological networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

Trevor Cickovski, Eli Peake, Vanessa Aguiar-Pulido, Giri Narasimhan

ABSTRACT

BACKGROUND: The notion of centrality is used to identify "important" nodes in social networks. Importance of nodes is not well-defined, and many different notions exist in the literature. The challenge of defining centrality in meaningful ways when network edges can be positively or negatively weighted has not been adequately addressed in the literature. Existing centrality algorithms also have a second shortcoming, i.e., the list of the most central nodes are often clustered in a specific region of the network and are not well represented across the network. METHODS: We address both by proposing Ablatio Triadum (ATria), an iterative centrality algorithm that uses the concept of "payoffs" from economic theory. RESULTS: We compare our algorithm with other known centrality algorithms and demonstrate how ATria overcomes several of their shortcomings. We demonstrate the applicability of our algorithm to synthetic networks as well as biological networks including bacterial co-occurrence networks, sometimes referred to as microbial social networks. CONCLUSIONS: We show evidence that ATria identifies three different kinds of "important" nodes in microbial social networks with different potential roles in the community. More... »

PAGES

239

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-017-1659-z

DOI

http://dx.doi.org/10.1186/s12859-017-1659-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085913198

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28617231


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Physiological Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Florida International University", 
          "id": "https://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Bioinformatics Research Group (BioRG) & Biomolecular Sciences Institute, School of Computing & Information Sciences, Florida International University, 11200 SW 8th St, 33196, Miami, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cickovski", 
        "givenName": "Trevor", 
        "id": "sg:person.01307205515.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307205515.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eckerd College", 
          "id": "https://www.grid.ac/institutes/grid.255423.7", 
          "name": [
            "Department of Computer Science, Eckerd College, 4200 54th Avenue South, 33711, Saint Petersburg, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peake", 
        "givenName": "Eli", 
        "id": "sg:person.07567520433.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567520433.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida International University", 
          "id": "https://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Bioinformatics Research Group (BioRG) & Biomolecular Sciences Institute, School of Computing & Information Sciences, Florida International University, 11200 SW 8th St, 33196, Miami, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aguiar-Pulido", 
        "givenName": "Vanessa", 
        "id": "sg:person.0637332557.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637332557.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida International University", 
          "id": "https://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Bioinformatics Research Group (BioRG) & Biomolecular Sciences Institute, School of Computing & Information Sciences, Florida International University, 11200 SW 8th St, 33196, Miami, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narasimhan", 
        "givenName": "Giri", 
        "id": "sg:person.01060212510.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060212510.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1993.tb01737.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002572936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648581", 
          "https://doi.org/10.1038/30835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648581", 
          "https://doi.org/10.1038/30835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0612-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007130845", 
          "https://doi.org/10.1038/scientificamerican0612-36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/spe.4380211102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008993696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011273458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.socnet.2014.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018772707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0502024102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019703441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020323494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15427951.2013.865686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020367436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020681127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.02714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028416329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028970743", 
          "https://doi.org/10.1038/82360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028970743", 
          "https://doi.org/10.1038/82360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029512395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jeth.1996.0108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-16-s11-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031841047", 
          "https://doi.org/10.1186/1471-2164-16-s11-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2009.0203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032405430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2012.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041822894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(98)01201-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045938049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/368568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045990353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/20.9.2140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047415362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb.2771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051507226", 
          "https://doi.org/10.1038/nsmb.2771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2012.00345.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052064301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/228631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058548129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/grsb.s702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077963076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/grsb.s702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077963076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972788.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dnsr.2004.1344743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093925308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccabs.2015.7344710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095819525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511761942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098663531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199206650.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098762313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "BACKGROUND: The notion of centrality is used to identify \"important\" nodes in social networks. Importance of nodes is not well-defined, and many different notions exist in the literature. The challenge of defining centrality in meaningful ways when network edges can be positively or negatively weighted has not been adequately addressed in the literature. Existing centrality algorithms also have a second shortcoming, i.e., the list of the most central nodes are often clustered in a specific region of the network and are not well represented across the network.\nMETHODS: We address both by proposing Ablatio Triadum (ATria), an iterative centrality algorithm that uses the concept of \"payoffs\" from economic theory.\nRESULTS: We compare our algorithm with other known centrality algorithms and demonstrate how ATria overcomes several of their shortcomings. We demonstrate the applicability of our algorithm to synthetic networks as well as biological networks including bacterial co-occurrence networks, sometimes referred to as microbial social networks.\nCONCLUSIONS: We show evidence that ATria identifies three different kinds of \"important\" nodes in microbial social networks with different potential roles in the community.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-017-1659-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "ATria: a novel centrality algorithm applied to biological networks", 
    "pagination": "239", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f5aa2d584f90ed1a11dddb44f843ad35223d3c1377d8364e6f756fe26fb2c6e2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28617231"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-017-1659-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085913198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-017-1659-z", 
      "https://app.dimensions.ai/details/publication/pub.1085913198"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54319_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-017-1659-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1659-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1659-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1659-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1659-z'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      66 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-017-1659-z schema:about N25a6e390feb9472d8d3c0d2fb1b1d178
2 N66ea68c266b14502931201ceffcc929b
3 Na9b40c81fad6467fafdc3c1d3d42ca51
4 Nd8b59e2abec448d28ce5a60d91ce82c3
5 Nf6142fc16c174f15967469a1aec9ae08
6 anzsrc-for:08
7 anzsrc-for:0802
8 schema:author Nba1ba9ca9b6d44baaf75b50621f06ace
9 schema:citation sg:pub.10.1038/30835
10 sg:pub.10.1038/30918
11 sg:pub.10.1038/82360
12 sg:pub.10.1038/nsmb.2771
13 sg:pub.10.1038/scientificamerican0612-36
14 sg:pub.10.1186/1471-2164-16-s11-s6
15 https://doi.org/10.1002/spe.4380211102
16 https://doi.org/10.1006/jeth.1996.0108
17 https://doi.org/10.1016/j.comnet.2012.10.007
18 https://doi.org/10.1016/j.socnet.2014.03.005
19 https://doi.org/10.1016/s0968-0004(98)01201-8
20 https://doi.org/10.1017/cbo9780511761942
21 https://doi.org/10.1073/pnas.0502024102
22 https://doi.org/10.1080/15427951.2013.865686
23 https://doi.org/10.1086/228631
24 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
25 https://doi.org/10.1093/bioinformatics/btp517
26 https://doi.org/10.1093/emboj/20.9.2140
27 https://doi.org/10.1093/nar/gkq1234
28 https://doi.org/10.1093/nar/gku989
29 https://doi.org/10.1098/rsif.2009.0203
30 https://doi.org/10.1101/gr.1239303
31 https://doi.org/10.1109/dnsr.2004.1344743
32 https://doi.org/10.1109/iccabs.2015.7344710
33 https://doi.org/10.1111/j.1365-2958.1993.tb01737.x
34 https://doi.org/10.1111/j.1574-6976.2012.00345.x
35 https://doi.org/10.1126/science.286.5439.509
36 https://doi.org/10.1137/1.9781611972788.31
37 https://doi.org/10.1155/2013/368568
38 https://doi.org/10.1242/jcs.02714
39 https://doi.org/10.1371/journal.pcbi.1002340
40 https://doi.org/10.4137/grsb.s702
41 schema:datePublished 2017-06
42 schema:datePublishedReg 2017-06-01
43 schema:description BACKGROUND: The notion of centrality is used to identify "important" nodes in social networks. Importance of nodes is not well-defined, and many different notions exist in the literature. The challenge of defining centrality in meaningful ways when network edges can be positively or negatively weighted has not been adequately addressed in the literature. Existing centrality algorithms also have a second shortcoming, i.e., the list of the most central nodes are often clustered in a specific region of the network and are not well represented across the network. METHODS: We address both by proposing Ablatio Triadum (ATria), an iterative centrality algorithm that uses the concept of "payoffs" from economic theory. RESULTS: We compare our algorithm with other known centrality algorithms and demonstrate how ATria overcomes several of their shortcomings. We demonstrate the applicability of our algorithm to synthetic networks as well as biological networks including bacterial co-occurrence networks, sometimes referred to as microbial social networks. CONCLUSIONS: We show evidence that ATria identifies three different kinds of "important" nodes in microbial social networks with different potential roles in the community.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N1d5670aa8b724fab836f136497cfe614
48 Ne54594369b4a4e03861958217d9b5ba0
49 sg:journal.1023786
50 schema:name ATria: a novel centrality algorithm applied to biological networks
51 schema:pagination 239
52 schema:productId N3772aaf088d14d4d8e9761d4b4966f89
53 N41d9a3caadae48bf9cf270b6215e20c3
54 N777e600f75204bc9b84cadde7ae5b31c
55 Nb117035ed5a64f16ab3b16826e298aaf
56 Nf2c5cca5abe24914873bbd65ca98a5ae
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085913198
58 https://doi.org/10.1186/s12859-017-1659-z
59 schema:sdDatePublished 2019-04-11T10:18
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N38c3dc32b2764640b87d4146c7a18bf9
62 schema:url https://link.springer.com/10.1186%2Fs12859-017-1659-z
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N1d5670aa8b724fab836f136497cfe614 schema:volumeNumber 18
67 rdf:type schema:PublicationVolume
68 N25a6e390feb9472d8d3c0d2fb1b1d178 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Algorithms
70 rdf:type schema:DefinedTerm
71 N3772aaf088d14d4d8e9761d4b4966f89 schema:name pubmed_id
72 schema:value 28617231
73 rdf:type schema:PropertyValue
74 N38c3dc32b2764640b87d4146c7a18bf9 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N3e278474b5564e3eaaed82eff25e6f9c rdf:first sg:person.0637332557.41
77 rdf:rest Nc4c6c4807ce7499587f25599aea8d794
78 N41d9a3caadae48bf9cf270b6215e20c3 schema:name nlm_unique_id
79 schema:value 100965194
80 rdf:type schema:PropertyValue
81 N66ea68c266b14502931201ceffcc929b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Computational Biology
83 rdf:type schema:DefinedTerm
84 N777e600f75204bc9b84cadde7ae5b31c schema:name dimensions_id
85 schema:value pub.1085913198
86 rdf:type schema:PropertyValue
87 Na9b40c81fad6467fafdc3c1d3d42ca51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Software
89 rdf:type schema:DefinedTerm
90 Nb117035ed5a64f16ab3b16826e298aaf schema:name doi
91 schema:value 10.1186/s12859-017-1659-z
92 rdf:type schema:PropertyValue
93 Nb39513c3649442d8b24a4764281ce176 rdf:first sg:person.07567520433.86
94 rdf:rest N3e278474b5564e3eaaed82eff25e6f9c
95 Nba1ba9ca9b6d44baaf75b50621f06ace rdf:first sg:person.01307205515.01
96 rdf:rest Nb39513c3649442d8b24a4764281ce176
97 Nc4c6c4807ce7499587f25599aea8d794 rdf:first sg:person.01060212510.73
98 rdf:rest rdf:nil
99 Nd8b59e2abec448d28ce5a60d91ce82c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Bacterial Physiological Phenomena
101 rdf:type schema:DefinedTerm
102 Ne54594369b4a4e03861958217d9b5ba0 schema:issueNumber Suppl 8
103 rdf:type schema:PublicationIssue
104 Nf2c5cca5abe24914873bbd65ca98a5ae schema:name readcube_id
105 schema:value f5aa2d584f90ed1a11dddb44f843ad35223d3c1377d8364e6f756fe26fb2c6e2
106 rdf:type schema:PropertyValue
107 Nf6142fc16c174f15967469a1aec9ae08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Models, Biological
109 rdf:type schema:DefinedTerm
110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
111 schema:name Information and Computing Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
114 schema:name Computation Theory and Mathematics
115 rdf:type schema:DefinedTerm
116 sg:journal.1023786 schema:issn 1471-2105
117 schema:name BMC Bioinformatics
118 rdf:type schema:Periodical
119 sg:person.01060212510.73 schema:affiliation https://www.grid.ac/institutes/grid.65456.34
120 schema:familyName Narasimhan
121 schema:givenName Giri
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060212510.73
123 rdf:type schema:Person
124 sg:person.01307205515.01 schema:affiliation https://www.grid.ac/institutes/grid.65456.34
125 schema:familyName Cickovski
126 schema:givenName Trevor
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307205515.01
128 rdf:type schema:Person
129 sg:person.0637332557.41 schema:affiliation https://www.grid.ac/institutes/grid.65456.34
130 schema:familyName Aguiar-Pulido
131 schema:givenName Vanessa
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637332557.41
133 rdf:type schema:Person
134 sg:person.07567520433.86 schema:affiliation https://www.grid.ac/institutes/grid.255423.7
135 schema:familyName Peake
136 schema:givenName Eli
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567520433.86
138 rdf:type schema:Person
139 sg:pub.10.1038/30835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648581
140 https://doi.org/10.1038/30835
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
143 https://doi.org/10.1038/30918
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/82360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028970743
146 https://doi.org/10.1038/82360
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nsmb.2771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051507226
149 https://doi.org/10.1038/nsmb.2771
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/scientificamerican0612-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007130845
152 https://doi.org/10.1038/scientificamerican0612-36
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2164-16-s11-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031841047
155 https://doi.org/10.1186/1471-2164-16-s11-s6
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/spe.4380211102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008993696
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1006/jeth.1996.0108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014677
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.comnet.2012.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041822894
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.socnet.2014.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018772707
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0968-0004(98)01201-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045938049
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1017/cbo9780511761942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663531
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.0502024102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019703441
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/15427951.2013.865686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020367436
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1086/228631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058548129
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098762313
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/btp517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011273458
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/emboj/20.9.2140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047415362
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/nar/gkq1234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020323494
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/nar/gku989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020681127
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1098/rsif.2009.0203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032405430
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/dnsr.2004.1344743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093925308
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/iccabs.2015.7344710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095819525
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/j.1365-2958.1993.tb01737.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002572936
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1574-6976.2012.00345.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052064301
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1137/1.9781611972788.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800265
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1155/2013/368568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045990353
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1242/jcs.02714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028416329
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1371/journal.pcbi.1002340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029512395
206 rdf:type schema:CreativeWork
207 https://doi.org/10.4137/grsb.s702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077963076
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.255423.7 schema:alternateName Eckerd College
210 schema:name Department of Computer Science, Eckerd College, 4200 54th Avenue South, 33711, Saint Petersburg, FL, USA
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.65456.34 schema:alternateName Florida International University
213 schema:name Bioinformatics Research Group (BioRG) & Biomolecular Sciences Institute, School of Computing & Information Sciences, Florida International University, 11200 SW 8th St, 33196, Miami, FL, USA
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...