Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

José Santos, Ángel Monteagudo

ABSTRACT

BACKGROUND: The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. RESULTS: The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. CONCLUSIONS: Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape. More... »

PAGES

195

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-017-1608-x

DOI

http://dx.doi.org/10.1186/s12859-017-1608-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084249983

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28347270


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Codon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Code", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Department of Computer Science, University of A Coru\u00f1a, Campus de Elvi\u00f1a s/n, 15071, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santos", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.011431300323.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011431300323.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Department of Computer Science, University of A Coru\u00f1a, Campus de Elvi\u00f1a s/n, 15071, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monteagudo", 
        "givenName": "\u00c1ngel", 
        "id": "sg:person.01067074360.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067074360.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0968-0004(99)01392-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000357086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-26887-1_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004084869", 
          "https://doi.org/10.1007/0-387-26887-1_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80866-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005182124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-003-2505-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006403910", 
          "https://doi.org/10.1007/s00239-003-2505-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(68)90392-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006985872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-4-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007846730", 
          "https://doi.org/10.1186/1745-6150-4-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0148174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007983778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0148174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007983778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0148174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007983778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02103132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013399148", 
          "https://doi.org/10.1007/bf02103132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1998.0547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013645110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2005-6-11-r91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016591274", 
          "https://doi.org/10.1186/gb-2005-6-11-r91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019442219", 
          "https://doi.org/10.1007/pl00006381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1994.1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020321701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.5.1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020555335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2010.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021654059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.54.6.1546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025023176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2016.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026859311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(99)01522-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029625858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/iub.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039653929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2006.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040648615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-2-24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041005854", 
          "https://doi.org/10.1186/1745-6150-2-24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02103616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042170368", 
          "https://doi.org/10.1007/bf02103616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02103616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042170368", 
          "https://doi.org/10.1007/bf02103616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(99)01531-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042262557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2010.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044691669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047218007", 
          "https://doi.org/10.1186/1471-2105-12-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-11-research0049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047360129", 
          "https://doi.org/10.1186/gb-2001-2-11-research0049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0480-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047499681", 
          "https://doi.org/10.1186/s12859-015-0480-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0480-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047499681", 
          "https://doi.org/10.1186/s12859-015-0480-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2382936.2383020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047698905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015527808424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048103314", 
          "https://doi.org/10.1023/a:1015527808424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2004.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050369774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.735432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511546433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664202"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered.\nRESULTS: The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape.\nCONCLUSIONS: Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-017-1608-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability", 
    "pagination": "195", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81ea7bae4d01d4d62f70955ea40d747e085d6cbb9b13dd0b7a8c8fe9179f28ca"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28347270"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-017-1608-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084249983"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-017-1608-x", 
      "https://app.dimensions.ai/details/publication/pub.1084249983"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54298_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-017-1608-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1608-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1608-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1608-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1608-x'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      67 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-017-1608-x schema:about N0fcc6983255a4c879046b3498247b31f
2 N1bc5596fd28f47729a843065643e8e00
3 N32e338f4566a49b9b6ade4fe5772399c
4 N4004578172d44c95930cbb80b73e590e
5 N5595613685e748259e6859ec45e2cd6e
6 N5f2e21bc4e3e498dbce682ba4406307e
7 Nd161a75656204d949385741f14e8d2b7
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N02a80edb6f3f41c3912f88a182713832
11 schema:citation sg:pub.10.1007/0-387-26887-1_13
12 sg:pub.10.1007/bf02103132
13 sg:pub.10.1007/bf02103616
14 sg:pub.10.1007/pl00006381
15 sg:pub.10.1007/s00239-003-2505-7
16 sg:pub.10.1023/a:1015527808424
17 sg:pub.10.1186/1471-2105-12-56
18 sg:pub.10.1186/1745-6150-2-24
19 sg:pub.10.1186/1745-6150-4-16
20 sg:pub.10.1186/gb-2001-2-11-research0049
21 sg:pub.10.1186/gb-2005-6-11-r91
22 sg:pub.10.1186/s12859-015-0480-9
23 https://doi.org/10.1002/iub.146
24 https://doi.org/10.1006/jtbi.1994.1086
25 https://doi.org/10.1016/0022-2836(68)90392-6
26 https://doi.org/10.1016/j.biosystems.2004.11.005
27 https://doi.org/10.1016/j.biosystems.2016.08.008
28 https://doi.org/10.1016/j.jtbi.2006.09.021
29 https://doi.org/10.1016/j.jtbi.2010.02.041
30 https://doi.org/10.1016/j.jtbi.2010.10.015
31 https://doi.org/10.1016/s0092-8674(00)80866-1
32 https://doi.org/10.1016/s0968-0004(99)01392-4
33 https://doi.org/10.1016/s0968-0004(99)01522-4
34 https://doi.org/10.1016/s0968-0004(99)01531-5
35 https://doi.org/10.1017/cbo9780511546433
36 https://doi.org/10.1073/pnas.54.6.1546
37 https://doi.org/10.1073/pnas.72.5.1909
38 https://doi.org/10.1098/rspb.1998.0547
39 https://doi.org/10.1109/4235.735432
40 https://doi.org/10.1145/2382936.2383020
41 https://doi.org/10.1371/journal.pone.0148174
42 schema:datePublished 2017-12
43 schema:datePublishedReg 2017-12-01
44 schema:description BACKGROUND: The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. RESULTS: The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. CONCLUSIONS: Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N7e24d1dfb4954f6d8ddb6fd87462d346
49 Nbfbeae135c73481cbf26d7df8be94a7c
50 sg:journal.1023786
51 schema:name Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability
52 schema:pagination 195
53 schema:productId N402429f340b84df18f2cae076a17dbdc
54 N42654fa9fb074fbd9dcc430a89a86b5d
55 N814990de79d84c269e266d0292c9e581
56 N8d756d62f7b8494482969e25a5e13c1c
57 Nde10e432b62d4102948232862f69a1a1
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249983
59 https://doi.org/10.1186/s12859-017-1608-x
60 schema:sdDatePublished 2019-04-11T10:15
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nf06d14cc891343adb65f7ecc83740c03
63 schema:url https://link.springer.com/10.1186%2Fs12859-017-1608-x
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N02a80edb6f3f41c3912f88a182713832 rdf:first sg:person.011431300323.56
68 rdf:rest N52d9284c6fe347eb8a27664e55421de8
69 N0fcc6983255a4c879046b3498247b31f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Biological Evolution
71 rdf:type schema:DefinedTerm
72 N1bc5596fd28f47729a843065643e8e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Selection, Genetic
74 rdf:type schema:DefinedTerm
75 N32e338f4566a49b9b6ade4fe5772399c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Models, Genetic
77 rdf:type schema:DefinedTerm
78 N4004578172d44c95930cbb80b73e590e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Algorithms
80 rdf:type schema:DefinedTerm
81 N402429f340b84df18f2cae076a17dbdc schema:name pubmed_id
82 schema:value 28347270
83 rdf:type schema:PropertyValue
84 N42654fa9fb074fbd9dcc430a89a86b5d schema:name dimensions_id
85 schema:value pub.1084249983
86 rdf:type schema:PropertyValue
87 N52d9284c6fe347eb8a27664e55421de8 rdf:first sg:person.01067074360.55
88 rdf:rest rdf:nil
89 N5595613685e748259e6859ec45e2cd6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Genetic Code
91 rdf:type schema:DefinedTerm
92 N5f2e21bc4e3e498dbce682ba4406307e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Evolution, Molecular
94 rdf:type schema:DefinedTerm
95 N7e24d1dfb4954f6d8ddb6fd87462d346 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N814990de79d84c269e266d0292c9e581 schema:name readcube_id
98 schema:value 81ea7bae4d01d4d62f70955ea40d747e085d6cbb9b13dd0b7a8c8fe9179f28ca
99 rdf:type schema:PropertyValue
100 N8d756d62f7b8494482969e25a5e13c1c schema:name doi
101 schema:value 10.1186/s12859-017-1608-x
102 rdf:type schema:PropertyValue
103 Nbfbeae135c73481cbf26d7df8be94a7c schema:volumeNumber 18
104 rdf:type schema:PublicationVolume
105 Nd161a75656204d949385741f14e8d2b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Codon
107 rdf:type schema:DefinedTerm
108 Nde10e432b62d4102948232862f69a1a1 schema:name nlm_unique_id
109 schema:value 100965194
110 rdf:type schema:PropertyValue
111 Nf06d14cc891343adb65f7ecc83740c03 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
117 schema:name Genetics
118 rdf:type schema:DefinedTerm
119 sg:journal.1023786 schema:issn 1471-2105
120 schema:name BMC Bioinformatics
121 rdf:type schema:Periodical
122 sg:person.01067074360.55 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
123 schema:familyName Monteagudo
124 schema:givenName Ángel
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067074360.55
126 rdf:type schema:Person
127 sg:person.011431300323.56 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
128 schema:familyName Santos
129 schema:givenName José
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011431300323.56
131 rdf:type schema:Person
132 sg:pub.10.1007/0-387-26887-1_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004084869
133 https://doi.org/10.1007/0-387-26887-1_13
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02103132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013399148
136 https://doi.org/10.1007/bf02103132
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf02103616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042170368
139 https://doi.org/10.1007/bf02103616
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/pl00006381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019442219
142 https://doi.org/10.1007/pl00006381
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00239-003-2505-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006403910
145 https://doi.org/10.1007/s00239-003-2505-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1023/a:1015527808424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048103314
148 https://doi.org/10.1023/a:1015527808424
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/1471-2105-12-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047218007
151 https://doi.org/10.1186/1471-2105-12-56
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/1745-6150-2-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041005854
154 https://doi.org/10.1186/1745-6150-2-24
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/1745-6150-4-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007846730
157 https://doi.org/10.1186/1745-6150-4-16
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/gb-2001-2-11-research0049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047360129
160 https://doi.org/10.1186/gb-2001-2-11-research0049
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/gb-2005-6-11-r91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016591274
163 https://doi.org/10.1186/gb-2005-6-11-r91
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/s12859-015-0480-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047499681
166 https://doi.org/10.1186/s12859-015-0480-9
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/iub.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039653929
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1006/jtbi.1994.1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020321701
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0022-2836(68)90392-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006985872
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.biosystems.2004.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050369774
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.biosystems.2016.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026859311
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.jtbi.2006.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040648615
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jtbi.2010.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021654059
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jtbi.2010.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044691669
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0092-8674(00)80866-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005182124
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0968-0004(99)01392-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000357086
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0968-0004(99)01522-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029625858
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0968-0004(99)01531-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042262557
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1017/cbo9780511546433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664202
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.54.6.1546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025023176
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.72.5.1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020555335
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1098/rspb.1998.0547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013645110
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/4235.735432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172009
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1145/2382936.2383020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047698905
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1371/journal.pone.0148174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007983778
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.8073.c schema:alternateName University of A Coruña
207 schema:name Department of Computer Science, University of A Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...