Generalizing cell segmentation and quantification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Zhenzhou Wang, Haixing Li

ABSTRACT

BACKGROUND: In recent years, the microscopy technology for imaging cells has developed greatly and rapidly. The accompanying requirements for automatic segmentation and quantification of the imaged cells are becoming more and more. After studied widely in both scientific research and industrial applications for many decades, cell segmentation has achieved great progress, especially in segmenting some specific types of cells, e.g. muscle cells. However, it lacks a framework to address the cell segmentation problems generally. On the contrary, different segmentation methods were proposed to address the different types of cells, which makes the research work divergent. In addition, most of the popular segmentation and quantification tools usually require a great part of manual work. RESULTS: To make the cell segmentation work more convergent, we propose a framework that is able to segment different kinds of cells automatically and robustly in this paper. This framework evolves the previously proposed method in segmenting the muscle cells and generalizes it to be suitable for segmenting and quantifying a variety of cell images by adding more union cases. Compared to the previous methods, the segmentation and quantification accuracy of the proposed framework is also improved by three novel procedures: (1) a simplified calibration method is proposed and added for the threshold selection process; (2) a noise blob filter is proposed to get rid of the noise blobs. (3) a boundary smoothing filter is proposed to reduce the false seeds produced by the iterative erosion. As it turned out, the quantification accuracy of the proposed framework increases from 93.4 to 96.8% compared to the previous method. In addition, the accuracy of the proposed framework is also better in quantifying the muscle cells than two available state-of-the-art methods. CONCLUSIONS: The proposed framework is able to automatically segment and quantify more types of cells than state-of-the-art methods. More... »

PAGES

189

References to SciGraph publications

  • 2015-11. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data in NATURE METHODS
  • 2014-03. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh in NATURE PROTOCOLS
  • 2008. Image Segmentation Using Automatic Seeded Region Growing and Instance-Based Learning in PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS
  • 2013-12. MmPalateMiRNA, an R package compendium illustrating analysis of miRNA microarray data in SOURCE CODE FOR BIOLOGY AND MEDICINE
  • 2010-08. Cellular imaging: Taking a long, hard look in NATURE
  • 2014-12. SMASH – semi-automatic muscle analysis using segmentation of histology: a MATLAB application in SKELETAL MUSCLE
  • 2013-12. Mojo Hand, a TALEN design tool for genome editing applications in BMC BIOINFORMATICS
  • 2014-12. FogBank: a single cell segmentation across multiple cell lines and image modalities in BMC BIOINFORMATICS
  • 2009-10. Seeing things: from microcinematography to live cell imaging in NATURE METHODS
  • 2013-12. Bacterial cell identification in differential interference contrast microscopy images in BMC BIOINFORMATICS
  • 2014-12. Atypical behavior of NFATc1 in cultured intercostal myofibers in SKELETAL MUSCLE
  • 2014-12. New mini- zincin structures provide a minimal scaffold for members of this metallopeptidase superfamily in BMC BIOINFORMATICS
  • 2013-03. Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells in NATURE NANOTECHNOLOGY
  • 2014-12. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences in BMC BIOINFORMATICS
  • 2014-10. A multi-layered segmentation method for nucleus detection in highly clustered microscopy imaging: A practical application and validation using human U2OS cytoplasm–nucleus translocation images in ARTIFICIAL INTELLIGENCE REVIEW
  • 2004-12. Applications of nanoparticles in biology and medicine in JOURNAL OF NANOBIOTECHNOLOGY
  • 2013-12. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation in SOURCE CODE FOR BIOLOGY AND MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12859-017-1604-1

    DOI

    http://dx.doi.org/10.1186/s12859-017-1604-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084249979

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28335722


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Calibration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Separation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shenyang Institute of Automation", 
              "id": "https://www.grid.ac/institutes/grid.458481.4", 
              "name": [
                "State Key Laboratory for Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zhenzhou", 
            "id": "sg:person.011255734601.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255734601.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenyang Institute of Automation", 
              "id": "https://www.grid.ac/institutes/grid.458481.4", 
              "name": [
                "State Key Laboratory for Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Haixing", 
            "id": "sg:person.013512373253.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512373253.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-14-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000348056", 
              "https://doi.org/10.1186/1471-2105-14-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.1631315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006606685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76725-1_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006764848", 
              "https://doi.org/10.1007/978-3-540-76725-1_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76725-1_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006764848", 
              "https://doi.org/10.1007/978-3-540-76725-1_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1477-3155-2-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007594116", 
              "https://doi.org/10.1186/1477-3155-2-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009090427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(93)90135-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009496226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(93)90135-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009496226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-15-328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009940869", 
              "https://doi.org/10.1186/1471-2105-15-328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011454519", 
              "https://doi.org/10.1038/nmeth.3579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1751-0473-8-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014467155", 
              "https://doi.org/10.1186/1751-0473-8-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015178368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.00484.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015565795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1009-707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021072560", 
              "https://doi.org/10.1038/nmeth1009-707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022041996", 
              "https://doi.org/10.1186/1471-2105-14-134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022041996", 
              "https://doi.org/10.1186/1471-2105-14-134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3ib40165k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022368194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2044-5040-4-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023044063", 
              "https://doi.org/10.1186/2044-5040-4-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1978.4310039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024097996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2013.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024247695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.22.018833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026054478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028100780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4661137a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028570253", 
              "https://doi.org/10.1038/4661137a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4661137a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028570253", 
              "https://doi.org/10.1038/4661137a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(93)90115-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029399834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(93)90115-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029399834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-15-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030123122", 
              "https://doi.org/10.1186/1471-2105-15-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-15-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030123122", 
              "https://doi.org/10.1186/1471-2105-15-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bioeng.2.1.315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035052684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2044-5040-4-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035071882", 
              "https://doi.org/10.1186/2044-5040-4-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1751-0473-8-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035894531", 
              "https://doi.org/10.1186/1751-0473-8-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038635456", 
              "https://doi.org/10.1038/nnano.2013.23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(99)00154-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040908201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0808843106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jmi.12090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041882096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042805607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044113679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-1684(98)00239-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046514692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2014.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047675671", 
              "https://doi.org/10.1038/nprot.2014.037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2015.12.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049915330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-014-0431-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051783711", 
              "https://doi.org/10.1186/s12859-014-0431-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-014-0431-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051783711", 
              "https://doi.org/10.1186/s12859-014-0431-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200703183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052582906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-013-9415-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053120083", 
              "https://doi.org/10.1007/s10462-013-9415-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcsi.2006.884469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061565792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2016.2542043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061632830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/16m1057346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062874433"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: In recent years, the microscopy technology for imaging cells has developed greatly and rapidly. The accompanying requirements for automatic segmentation and quantification of the imaged cells are becoming more and more. After studied widely in both scientific research and industrial applications for many decades, cell segmentation has achieved great progress, especially in segmenting some specific types of cells, e.g. muscle cells. However, it lacks a framework to address the cell segmentation problems generally. On the contrary, different segmentation methods were proposed to address the different types of cells, which makes the research work divergent. In addition, most of the popular segmentation and quantification tools usually require a great part of manual work.\nRESULTS: To make the cell segmentation work more convergent, we propose a framework that is able to segment different kinds of cells automatically and robustly in this paper. This framework evolves the previously proposed method in segmenting the muscle cells and generalizes it to be suitable for segmenting and quantifying a variety of cell images by adding more union cases. Compared to the previous methods, the segmentation and quantification accuracy of the proposed framework is also improved by three novel procedures: (1) a simplified calibration method is proposed and added for the threshold selection process; (2) a noise blob filter is proposed to get rid of the noise blobs. (3) a boundary smoothing filter is proposed to reduce the false seeds produced by the iterative erosion. As it turned out, the quantification accuracy of the proposed framework increases from 93.4 to 96.8% compared to the previous method. In addition, the accuracy of the proposed framework is also better in quantifying the muscle cells than two available state-of-the-art methods.\nCONCLUSIONS: The proposed framework is able to automatically segment and quantify more types of cells than state-of-the-art methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12859-017-1604-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Generalizing cell segmentation and quantification", 
        "pagination": "189", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "18ff128fe820a221250235628dc210015a45dfa327cdca9b7ed0e0b1006870b9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28335722"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12859-017-1604-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084249979"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12859-017-1604-1", 
          "https://app.dimensions.ai/details/publication/pub.1084249979"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12859-017-1604-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1604-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1604-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1604-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1604-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      21 PREDICATES      72 URIs      24 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12859-017-1604-1 schema:about N2e1b58e961024d379b713fbbd50c8762
    2 N3f26c1a0a67544e0bce5149dfb9db70a
    3 N79d69378781c4623af7bb497e447d3fa
    4 anzsrc-for:08
    5 anzsrc-for:0801
    6 schema:author N628aa42bff984068a324427fc0fd2604
    7 schema:citation sg:pub.10.1007/978-3-540-76725-1_21
    8 sg:pub.10.1007/s10462-013-9415-x
    9 sg:pub.10.1038/4661137a
    10 sg:pub.10.1038/nmeth.3579
    11 sg:pub.10.1038/nmeth1009-707
    12 sg:pub.10.1038/nnano.2013.23
    13 sg:pub.10.1038/nprot.2014.037
    14 sg:pub.10.1186/1471-2105-14-1
    15 sg:pub.10.1186/1471-2105-14-134
    16 sg:pub.10.1186/1471-2105-15-1
    17 sg:pub.10.1186/1471-2105-15-328
    18 sg:pub.10.1186/1477-3155-2-3
    19 sg:pub.10.1186/1751-0473-8-1
    20 sg:pub.10.1186/1751-0473-8-16
    21 sg:pub.10.1186/2044-5040-4-1
    22 sg:pub.10.1186/2044-5040-4-21
    23 sg:pub.10.1186/s12859-014-0431-x
    24 https://doi.org/10.1002/adma.200703183
    25 https://doi.org/10.1016/0031-3203(93)90115-d
    26 https://doi.org/10.1016/0031-3203(93)90135-j
    27 https://doi.org/10.1016/j.patcog.2013.11.004
    28 https://doi.org/10.1016/j.patcog.2015.12.009
    29 https://doi.org/10.1016/s0031-3203(99)00154-5
    30 https://doi.org/10.1016/s0165-1684(98)00239-4
    31 https://doi.org/10.1039/c3ib40165k
    32 https://doi.org/10.1073/pnas.0808843106
    33 https://doi.org/10.1093/bioinformatics/btu302
    34 https://doi.org/10.1093/bioinformatics/btv088
    35 https://doi.org/10.1109/tcsi.2006.884469
    36 https://doi.org/10.1109/tii.2016.2542043
    37 https://doi.org/10.1109/tsmc.1978.4310039
    38 https://doi.org/10.1109/tsmc.1979.4310076
    39 https://doi.org/10.1111/jmi.12090
    40 https://doi.org/10.1117/1.1631315
    41 https://doi.org/10.1137/16m1057346
    42 https://doi.org/10.1146/annurev.bioeng.2.1.315
    43 https://doi.org/10.1152/jn.00484.2010
    44 https://doi.org/10.1364/oe.22.018833
    45 https://doi.org/10.1371/journal.pcbi.1002462
    46 https://doi.org/10.1371/journal.pcbi.1002780
    47 schema:datePublished 2017-12
    48 schema:datePublishedReg 2017-12-01
    49 schema:description BACKGROUND: In recent years, the microscopy technology for imaging cells has developed greatly and rapidly. The accompanying requirements for automatic segmentation and quantification of the imaged cells are becoming more and more. After studied widely in both scientific research and industrial applications for many decades, cell segmentation has achieved great progress, especially in segmenting some specific types of cells, e.g. muscle cells. However, it lacks a framework to address the cell segmentation problems generally. On the contrary, different segmentation methods were proposed to address the different types of cells, which makes the research work divergent. In addition, most of the popular segmentation and quantification tools usually require a great part of manual work. RESULTS: To make the cell segmentation work more convergent, we propose a framework that is able to segment different kinds of cells automatically and robustly in this paper. This framework evolves the previously proposed method in segmenting the muscle cells and generalizes it to be suitable for segmenting and quantifying a variety of cell images by adding more union cases. Compared to the previous methods, the segmentation and quantification accuracy of the proposed framework is also improved by three novel procedures: (1) a simplified calibration method is proposed and added for the threshold selection process; (2) a noise blob filter is proposed to get rid of the noise blobs. (3) a boundary smoothing filter is proposed to reduce the false seeds produced by the iterative erosion. As it turned out, the quantification accuracy of the proposed framework increases from 93.4 to 96.8% compared to the previous method. In addition, the accuracy of the proposed framework is also better in quantifying the muscle cells than two available state-of-the-art methods. CONCLUSIONS: The proposed framework is able to automatically segment and quantify more types of cells than state-of-the-art methods.
    50 schema:genre research_article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree true
    53 schema:isPartOf N62a4464fd63b4c1291f93be00549ee29
    54 Na39404c22f0c499ead37fd05ad630123
    55 sg:journal.1023786
    56 schema:name Generalizing cell segmentation and quantification
    57 schema:pagination 189
    58 schema:productId N24f61f7acbba468cb907301a0f22803a
    59 N36d5fe1ff71243c8a97776967e4a1db4
    60 Nb4a64419f9674fd3b46670a98c2f1fdb
    61 Nbb05025314194aa1aba35143c526ce24
    62 Nc0acbe2fce0142a196224a1d8565a33d
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249979
    64 https://doi.org/10.1186/s12859-017-1604-1
    65 schema:sdDatePublished 2019-04-11T09:55
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N4cbe8b4f743c4131880d837b91f07627
    68 schema:url https://link.springer.com/10.1186%2Fs12859-017-1604-1
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N24f61f7acbba468cb907301a0f22803a schema:name nlm_unique_id
    73 schema:value 100965194
    74 rdf:type schema:PropertyValue
    75 N2e1b58e961024d379b713fbbd50c8762 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Calibration
    77 rdf:type schema:DefinedTerm
    78 N36d5fe1ff71243c8a97776967e4a1db4 schema:name pubmed_id
    79 schema:value 28335722
    80 rdf:type schema:PropertyValue
    81 N3f26c1a0a67544e0bce5149dfb9db70a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Humans
    83 rdf:type schema:DefinedTerm
    84 N4cbe8b4f743c4131880d837b91f07627 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N628aa42bff984068a324427fc0fd2604 rdf:first sg:person.011255734601.84
    87 rdf:rest Nceac6b0d3841413481d40a4bf4c7addf
    88 N62a4464fd63b4c1291f93be00549ee29 schema:issueNumber 1
    89 rdf:type schema:PublicationIssue
    90 N79d69378781c4623af7bb497e447d3fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Cell Separation
    92 rdf:type schema:DefinedTerm
    93 Na39404c22f0c499ead37fd05ad630123 schema:volumeNumber 18
    94 rdf:type schema:PublicationVolume
    95 Nb4a64419f9674fd3b46670a98c2f1fdb schema:name doi
    96 schema:value 10.1186/s12859-017-1604-1
    97 rdf:type schema:PropertyValue
    98 Nbb05025314194aa1aba35143c526ce24 schema:name dimensions_id
    99 schema:value pub.1084249979
    100 rdf:type schema:PropertyValue
    101 Nc0acbe2fce0142a196224a1d8565a33d schema:name readcube_id
    102 schema:value 18ff128fe820a221250235628dc210015a45dfa327cdca9b7ed0e0b1006870b9
    103 rdf:type schema:PropertyValue
    104 Nceac6b0d3841413481d40a4bf4c7addf rdf:first sg:person.013512373253.26
    105 rdf:rest rdf:nil
    106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Information and Computing Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Artificial Intelligence and Image Processing
    111 rdf:type schema:DefinedTerm
    112 sg:journal.1023786 schema:issn 1471-2105
    113 schema:name BMC Bioinformatics
    114 rdf:type schema:Periodical
    115 sg:person.011255734601.84 schema:affiliation https://www.grid.ac/institutes/grid.458481.4
    116 schema:familyName Wang
    117 schema:givenName Zhenzhou
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255734601.84
    119 rdf:type schema:Person
    120 sg:person.013512373253.26 schema:affiliation https://www.grid.ac/institutes/grid.458481.4
    121 schema:familyName Li
    122 schema:givenName Haixing
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512373253.26
    124 rdf:type schema:Person
    125 sg:pub.10.1007/978-3-540-76725-1_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006764848
    126 https://doi.org/10.1007/978-3-540-76725-1_21
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10462-013-9415-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053120083
    129 https://doi.org/10.1007/s10462-013-9415-x
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1038/4661137a schema:sameAs https://app.dimensions.ai/details/publication/pub.1028570253
    132 https://doi.org/10.1038/4661137a
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1038/nmeth.3579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011454519
    135 https://doi.org/10.1038/nmeth.3579
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/nmeth1009-707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021072560
    138 https://doi.org/10.1038/nmeth1009-707
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/nnano.2013.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038635456
    141 https://doi.org/10.1038/nnano.2013.23
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/nprot.2014.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047675671
    144 https://doi.org/10.1038/nprot.2014.037
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1186/1471-2105-14-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000348056
    147 https://doi.org/10.1186/1471-2105-14-1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1186/1471-2105-14-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022041996
    150 https://doi.org/10.1186/1471-2105-14-134
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1186/1471-2105-15-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030123122
    153 https://doi.org/10.1186/1471-2105-15-1
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1186/1471-2105-15-328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009940869
    156 https://doi.org/10.1186/1471-2105-15-328
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1186/1477-3155-2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007594116
    159 https://doi.org/10.1186/1477-3155-2-3
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1186/1751-0473-8-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035894531
    162 https://doi.org/10.1186/1751-0473-8-1
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1186/1751-0473-8-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014467155
    165 https://doi.org/10.1186/1751-0473-8-16
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1186/2044-5040-4-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023044063
    168 https://doi.org/10.1186/2044-5040-4-1
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1186/2044-5040-4-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035071882
    171 https://doi.org/10.1186/2044-5040-4-21
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1186/s12859-014-0431-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051783711
    174 https://doi.org/10.1186/s12859-014-0431-x
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1002/adma.200703183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052582906
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/0031-3203(93)90115-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1029399834
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/0031-3203(93)90135-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1009496226
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.patcog.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024247695
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.patcog.2015.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049915330
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/s0031-3203(99)00154-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040908201
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/s0165-1684(98)00239-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046514692
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1039/c3ib40165k schema:sameAs https://app.dimensions.ai/details/publication/pub.1022368194
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1073/pnas.0808843106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235104
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1093/bioinformatics/btu302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015178368
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1093/bioinformatics/btv088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044113679
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1109/tcsi.2006.884469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061565792
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1109/tii.2016.2542043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632830
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1109/tsmc.1978.4310039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097996
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1111/jmi.12090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041882096
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1117/1.1631315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006606685
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1137/16m1057346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874433
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1146/annurev.bioeng.2.1.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035052684
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1152/jn.00484.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015565795
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1364/oe.22.018833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026054478
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1371/journal.pcbi.1002462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028100780
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1371/journal.pcbi.1002780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009090427
    221 rdf:type schema:CreativeWork
    222 https://www.grid.ac/institutes/grid.458481.4 schema:alternateName Shenyang Institute of Automation
    223 schema:name State Key Laboratory for Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...