Reactome pathway analysis: a high-performance in-memory approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-02

AUTHORS

Antonio Fabregat, Konstantinos Sidiropoulos, Guilherme Viteri, Oscar Forner, Pablo Marin-Garcia, Vicente Arnau, Peter D’Eustachio, Lincoln Stein, Henning Hermjakob

ABSTRACT

BackgroundReactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis methods have a broad range of applications in physiological and biomedical research; one of the main problems, from the analysis methods performance point of view, is the constantly increasing size of the data samples.ResultsHere, we present a new high-performance in-memory implementation of the well-established over-representation analysis method. To achieve the target, the over-representation analysis method is divided in four different steps and, for each of them, specific data structures are used to improve performance and minimise the memory footprint. The first step, finding out whether an identifier in the user’s sample corresponds to an entity in Reactome, is addressed using a radix tree as a lookup table. The second step, modelling the proteins, chemicals, their orthologous in other species and their composition in complexes and sets, is addressed with a graph. The third and fourth steps, that aggregate the results and calculate the statistics, are solved with a double-linked tree.ConclusionThrough the use of highly optimised, in-memory data structures and algorithms, Reactome has achieved a stable, high performance pathway analysis service, enabling the analysis of genome-wide datasets within seconds, allowing interactive exploration and analysis of high throughput data. The proposed pathway analysis approach is available in the Reactome production web site either via the AnalysisService for programmatic access or the user submission interface integrated into the PathwayBrowser. Reactome is an open data and open source project and all of its source code, including the one described here, is available in the AnalysisTools repository in the Reactome GitHub (https://github.com/reactome/). More... »

PAGES

142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2

DOI

http://dx.doi.org/10.1186/s12859-017-1559-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084249935

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28249561


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Open Targets, Wellcome Genome Campus, Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/grid.510991.5", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
            "Open Targets, Wellcome Genome Campus, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fabregat", 
        "givenName": "Antonio", 
        "id": "sg:person.01010722032.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010722032.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sidiropoulos", 
        "givenName": "Konstantinos", 
        "id": "sg:person.01062706713.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062706713.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viteri", 
        "givenName": "Guilherme", 
        "id": "sg:person.010255240707.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255240707.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forner", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Medicina Genomica, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.493325.a", 
          "name": [
            "Fundaci\u00f3n Investigaci\u00f3n INCLIVA, Universitat de Val\u00e8ncia, Valencia, Spain", 
            "Instituto de Medicina Genomica, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marin-Garcia", 
        "givenName": "Pablo", 
        "id": "sg:person.01312440135.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312440135.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Integrative Systems Biology (I2SysBio), Universitat de Val\u00e8ncia-CSIC, Paterna, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.507638.f", 
          "name": [
            "Escuela T\u00e9cnica Superior de Ingenier\u00edas, Universitat de Val\u00e8ncia, Valencia, Spain", 
            "Institute for Integrative Systems Biology (I2SysBio), Universitat de Val\u00e8ncia-CSIC, Paterna, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arnau", 
        "givenName": "Vicente", 
        "id": "sg:person.01054627757.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054627757.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NYU Langone Medical Center, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.240324.3", 
          "name": [
            "NYU Langone Medical Center, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Eustachio", 
        "givenName": "Peter", 
        "id": "sg:person.01206747773.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206747773.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Genetics, University of Toronto, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Ontario Institute for Cancer Research, Toronto, Canada", 
            "Department of Molecular Genetics, University of Toronto, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Lincoln", 
        "id": "sg:person.0615607440.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615607440.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.506261.6", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
            "State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hermjakob", 
        "givenName": "Henning", 
        "id": "sg:person.01070655672.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070655672.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-8-401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039479467", 
          "https://doi.org/10.1186/1471-2105-8-401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001861326", 
          "https://doi.org/10.1186/1471-2105-11-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84800-070-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029993287", 
          "https://doi.org/10.1007/978-1-84800-070-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-02", 
    "datePublishedReg": "2017-03-02", 
    "description": "BackgroundReactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis methods have a broad range of applications in physiological and biomedical research; one of the main problems, from the analysis methods performance point of view, is the constantly increasing size of the data samples.ResultsHere, we present a new high-performance in-memory implementation of the well-established over-representation analysis method. To achieve the target, the over-representation analysis method is divided in four different steps and, for each of them, specific data structures are used to improve performance and minimise the memory footprint. The first step, finding out whether an identifier in the user\u2019s sample corresponds to an entity in Reactome, is addressed using a radix tree as a lookup table. The second step, modelling the proteins, chemicals, their orthologous in other species and their composition in complexes and sets, is addressed with a graph. The third and fourth steps, that aggregate the results and calculate the statistics, are solved with a double-linked tree.ConclusionThrough the use of highly optimised, in-memory data structures and algorithms, Reactome has achieved a stable, high performance pathway analysis service, enabling the analysis of genome-wide datasets within seconds, allowing interactive exploration and analysis of high throughput data. The proposed pathway analysis approach is available in the Reactome production web site either via the AnalysisService for programmatic access or the user submission interface integrated into the PathwayBrowser. Reactome is an open data and open source project and all of its source code, including the one described here, is available in the AnalysisTools repository in the Reactome GitHub (https://github.com/reactome/).", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12859-017-1559-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3860232", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2697603", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "data structure", 
      "production web sites", 
      "genome-wide datasets", 
      "memory data structures", 
      "open source projects", 
      "specific data structure", 
      "pathway analysis approach", 
      "high-throughput data", 
      "pathway analysis methods", 
      "programmatic access", 
      "memory footprint", 
      "radix tree", 
      "interactive exploration", 
      "genome analysis", 
      "source projects", 
      "source code", 
      "bioinformatics tools", 
      "analysis services", 
      "memory implementation", 
      "open data", 
      "systems biology", 
      "pathway analysis", 
      "memory approach", 
      "Web sites", 
      "pathway knowledge", 
      "Reactome", 
      "user sample", 
      "throughput data", 
      "lookup table", 
      "data samples", 
      "analysis method", 
      "biomedical research", 
      "performance point", 
      "main problems", 
      "trees", 
      "different steps", 
      "basic research", 
      "analysis approach", 
      "GitHub", 
      "biology", 
      "repository", 
      "species", 
      "protein", 
      "algorithm", 
      "dataset", 
      "first step", 
      "identifiers", 
      "second step", 
      "graph", 
      "fourth step", 
      "visualisation", 
      "broad range", 
      "implementation", 
      "code", 
      "services", 
      "step", 
      "ResultsHere", 
      "complexes", 
      "method", 
      "set", 
      "access", 
      "interface", 
      "target", 
      "tool", 
      "data", 
      "sites", 
      "applications", 
      "performance", 
      "table", 
      "analysis", 
      "entities", 
      "project", 
      "research", 
      "structure", 
      "footprint", 
      "modelling", 
      "exploration", 
      "seconds", 
      "composition", 
      "knowledge", 
      "chemicals", 
      "view", 
      "one", 
      "statistics", 
      "point", 
      "use", 
      "samples", 
      "size", 
      "results", 
      "approach", 
      "range", 
      "interpretation", 
      "education", 
      "ConclusionThrough", 
      "problem"
    ], 
    "name": "Reactome pathway analysis: a high-performance in-memory approach", 
    "pagination": "142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084249935"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-017-1559-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28249561"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-017-1559-2", 
      "https://app.dimensions.ai/details/publication/pub.1084249935"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_741.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12859-017-1559-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      131 URIs      119 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-017-1559-2 schema:about N4bc8503a87f849e99f81027b5fed693f
2 N51d4b2c9540e4b019d7fce01ea2435fb
3 N60dcb8b2e5814a428a58ec3fec9586e7
4 N7c4cce3df6a7406693d074ee0807c958
5 Na88d07e80b944a07b60815401f6515e3
6 Na965589025954c7e90bc1018d67a8c41
7 Nd118bf5fff7c4bbabfc964d5b2a42925
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N0bf9d00ba1ba47dabbbdb0a4ef8c2a34
11 schema:citation sg:pub.10.1007/978-1-84800-070-4
12 sg:pub.10.1038/nprot.2008.211
13 sg:pub.10.1186/1471-2105-11-5
14 sg:pub.10.1186/1471-2105-8-401
15 schema:datePublished 2017-03-02
16 schema:datePublishedReg 2017-03-02
17 schema:description BackgroundReactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis methods have a broad range of applications in physiological and biomedical research; one of the main problems, from the analysis methods performance point of view, is the constantly increasing size of the data samples.ResultsHere, we present a new high-performance in-memory implementation of the well-established over-representation analysis method. To achieve the target, the over-representation analysis method is divided in four different steps and, for each of them, specific data structures are used to improve performance and minimise the memory footprint. The first step, finding out whether an identifier in the user’s sample corresponds to an entity in Reactome, is addressed using a radix tree as a lookup table. The second step, modelling the proteins, chemicals, their orthologous in other species and their composition in complexes and sets, is addressed with a graph. The third and fourth steps, that aggregate the results and calculate the statistics, are solved with a double-linked tree.ConclusionThrough the use of highly optimised, in-memory data structures and algorithms, Reactome has achieved a stable, high performance pathway analysis service, enabling the analysis of genome-wide datasets within seconds, allowing interactive exploration and analysis of high throughput data. The proposed pathway analysis approach is available in the Reactome production web site either via the AnalysisService for programmatic access or the user submission interface integrated into the PathwayBrowser. Reactome is an open data and open source project and all of its source code, including the one described here, is available in the AnalysisTools repository in the Reactome GitHub (https://github.com/reactome/).
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N1429af8fe0314af58e74330e6b227b4e
21 N2c27650256164efebc6cc72692a01e96
22 sg:journal.1023786
23 schema:keywords ConclusionThrough
24 GitHub
25 Reactome
26 ResultsHere
27 Web sites
28 access
29 algorithm
30 analysis
31 analysis approach
32 analysis method
33 analysis services
34 applications
35 approach
36 basic research
37 bioinformatics tools
38 biology
39 biomedical research
40 broad range
41 chemicals
42 code
43 complexes
44 composition
45 data
46 data samples
47 data structure
48 dataset
49 different steps
50 education
51 entities
52 exploration
53 first step
54 footprint
55 fourth step
56 genome analysis
57 genome-wide datasets
58 graph
59 high-throughput data
60 identifiers
61 implementation
62 interactive exploration
63 interface
64 interpretation
65 knowledge
66 lookup table
67 main problems
68 memory approach
69 memory data structures
70 memory footprint
71 memory implementation
72 method
73 modelling
74 one
75 open data
76 open source projects
77 pathway analysis
78 pathway analysis approach
79 pathway analysis methods
80 pathway knowledge
81 performance
82 performance point
83 point
84 problem
85 production web sites
86 programmatic access
87 project
88 protein
89 radix tree
90 range
91 repository
92 research
93 results
94 samples
95 second step
96 seconds
97 services
98 set
99 sites
100 size
101 source code
102 source projects
103 species
104 specific data structure
105 statistics
106 step
107 structure
108 systems biology
109 table
110 target
111 throughput data
112 tool
113 trees
114 use
115 user sample
116 view
117 visualisation
118 schema:name Reactome pathway analysis: a high-performance in-memory approach
119 schema:pagination 142
120 schema:productId N2a46ef07e35a4ba7806b6d066682fd50
121 N6bc1674ccc4e4a4a97595ecfccf33621
122 Nea952b46e3134ed9943bbd7f3b0e1def
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249935
124 https://doi.org/10.1186/s12859-017-1559-2
125 schema:sdDatePublished 2022-09-02T16:01
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher Nb50d095e86c9460ca3c2e99efb4a2daa
128 schema:url https://doi.org/10.1186/s12859-017-1559-2
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N0bf9d00ba1ba47dabbbdb0a4ef8c2a34 rdf:first sg:person.01010722032.12
133 rdf:rest Nb51f0a8ab0224b43aca4b4e4b3604d72
134 N1429af8fe0314af58e74330e6b227b4e schema:volumeNumber 18
135 rdf:type schema:PublicationVolume
136 N18916d477a3040c080feba8ecb5648e0 rdf:first sg:person.01312440135.65
137 rdf:rest N63cbedda818041be8ae2f024ab31ec4e
138 N267edf41e2504e2f86aba52575d899f1 rdf:first sg:person.01070655672.90
139 rdf:rest rdf:nil
140 N2a46ef07e35a4ba7806b6d066682fd50 schema:name pubmed_id
141 schema:value 28249561
142 rdf:type schema:PropertyValue
143 N2c27650256164efebc6cc72692a01e96 schema:issueNumber 1
144 rdf:type schema:PublicationIssue
145 N31556feb8118423d887a28600b8248ab rdf:first sg:person.010255240707.43
146 rdf:rest Nd10dfcdd14a049f498ffb6b75906fd2d
147 N31edba63ffba40bc9e17dd752567c257 rdf:first sg:person.0615607440.16
148 rdf:rest N267edf41e2504e2f86aba52575d899f1
149 N4bc8503a87f849e99f81027b5fed693f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Humans
151 rdf:type schema:DefinedTerm
152 N51d4b2c9540e4b019d7fce01ea2435fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Software
154 rdf:type schema:DefinedTerm
155 N5b3fba6141ea43eaaa12c0a3a7289636 rdf:first sg:person.01206747773.46
156 rdf:rest N31edba63ffba40bc9e17dd752567c257
157 N60dcb8b2e5814a428a58ec3fec9586e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Proteins
159 rdf:type schema:DefinedTerm
160 N63cbedda818041be8ae2f024ab31ec4e rdf:first sg:person.01054627757.76
161 rdf:rest N5b3fba6141ea43eaaa12c0a3a7289636
162 N6bc1674ccc4e4a4a97595ecfccf33621 schema:name doi
163 schema:value 10.1186/s12859-017-1559-2
164 rdf:type schema:PropertyValue
165 N7c4cce3df6a7406693d074ee0807c958 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Algorithms
167 rdf:type schema:DefinedTerm
168 Na88d07e80b944a07b60815401f6515e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Computational Biology
170 rdf:type schema:DefinedTerm
171 Na965589025954c7e90bc1018d67a8c41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Databases, Factual
173 rdf:type schema:DefinedTerm
174 Nb50d095e86c9460ca3c2e99efb4a2daa schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 Nb51f0a8ab0224b43aca4b4e4b3604d72 rdf:first sg:person.01062706713.32
177 rdf:rest N31556feb8118423d887a28600b8248ab
178 Nd10dfcdd14a049f498ffb6b75906fd2d rdf:first Nf4d3855025f34ec3986bbb656853d0a2
179 rdf:rest N18916d477a3040c080feba8ecb5648e0
180 Nd118bf5fff7c4bbabfc964d5b2a42925 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Nucleic Acids
182 rdf:type schema:DefinedTerm
183 Nea952b46e3134ed9943bbd7f3b0e1def schema:name dimensions_id
184 schema:value pub.1084249935
185 rdf:type schema:PropertyValue
186 Nf4d3855025f34ec3986bbb656853d0a2 schema:affiliation grid-institutes:None
187 schema:familyName Forner
188 schema:givenName Oscar
189 rdf:type schema:Person
190 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
191 schema:name Information and Computing Sciences
192 rdf:type schema:DefinedTerm
193 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
194 schema:name Artificial Intelligence and Image Processing
195 rdf:type schema:DefinedTerm
196 sg:grant.2697603 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1559-2
197 rdf:type schema:MonetaryGrant
198 sg:grant.3860232 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1559-2
199 rdf:type schema:MonetaryGrant
200 sg:journal.1023786 schema:issn 1471-2105
201 schema:name BMC Bioinformatics
202 schema:publisher Springer Nature
203 rdf:type schema:Periodical
204 sg:person.01010722032.12 schema:affiliation grid-institutes:grid.510991.5
205 schema:familyName Fabregat
206 schema:givenName Antonio
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010722032.12
208 rdf:type schema:Person
209 sg:person.010255240707.43 schema:affiliation grid-institutes:None
210 schema:familyName Viteri
211 schema:givenName Guilherme
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255240707.43
213 rdf:type schema:Person
214 sg:person.01054627757.76 schema:affiliation grid-institutes:grid.507638.f
215 schema:familyName Arnau
216 schema:givenName Vicente
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054627757.76
218 rdf:type schema:Person
219 sg:person.01062706713.32 schema:affiliation grid-institutes:None
220 schema:familyName Sidiropoulos
221 schema:givenName Konstantinos
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062706713.32
223 rdf:type schema:Person
224 sg:person.01070655672.90 schema:affiliation grid-institutes:grid.506261.6
225 schema:familyName Hermjakob
226 schema:givenName Henning
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070655672.90
228 rdf:type schema:Person
229 sg:person.01206747773.46 schema:affiliation grid-institutes:grid.240324.3
230 schema:familyName D’Eustachio
231 schema:givenName Peter
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206747773.46
233 rdf:type schema:Person
234 sg:person.01312440135.65 schema:affiliation grid-institutes:grid.493325.a
235 schema:familyName Marin-Garcia
236 schema:givenName Pablo
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312440135.65
238 rdf:type schema:Person
239 sg:person.0615607440.16 schema:affiliation grid-institutes:grid.17063.33
240 schema:familyName Stein
241 schema:givenName Lincoln
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615607440.16
243 rdf:type schema:Person
244 sg:pub.10.1007/978-1-84800-070-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029993287
245 https://doi.org/10.1007/978-1-84800-070-4
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
248 https://doi.org/10.1038/nprot.2008.211
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1471-2105-11-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001861326
251 https://doi.org/10.1186/1471-2105-11-5
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2105-8-401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039479467
254 https://doi.org/10.1186/1471-2105-8-401
255 rdf:type schema:CreativeWork
256 grid-institutes:None schema:alternateName European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
257 schema:name European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
258 rdf:type schema:Organization
259 grid-institutes:grid.17063.33 schema:alternateName Department of Molecular Genetics, University of Toronto, Toronto, Canada
260 schema:name Department of Molecular Genetics, University of Toronto, Toronto, Canada
261 Ontario Institute for Cancer Research, Toronto, Canada
262 rdf:type schema:Organization
263 grid-institutes:grid.240324.3 schema:alternateName NYU Langone Medical Center, New York, USA
264 schema:name NYU Langone Medical Center, New York, USA
265 rdf:type schema:Organization
266 grid-institutes:grid.493325.a schema:alternateName Instituto de Medicina Genomica, Valencia, Spain
267 schema:name Fundación Investigación INCLIVA, Universitat de València, Valencia, Spain
268 Instituto de Medicina Genomica, Valencia, Spain
269 rdf:type schema:Organization
270 grid-institutes:grid.506261.6 schema:alternateName State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, 102206, Beijing, China
271 schema:name European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
272 State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, 102206, Beijing, China
273 rdf:type schema:Organization
274 grid-institutes:grid.507638.f schema:alternateName Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
275 schema:name Escuela Técnica Superior de Ingenierías, Universitat de València, Valencia, Spain
276 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
277 rdf:type schema:Organization
278 grid-institutes:grid.510991.5 schema:alternateName Open Targets, Wellcome Genome Campus, Hinxton, UK
279 schema:name European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
280 Open Targets, Wellcome Genome Campus, Hinxton, UK
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...