Reactome pathway analysis: a high-performance in-memory approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-02

AUTHORS

Antonio Fabregat, Konstantinos Sidiropoulos, Guilherme Viteri, Oscar Forner, Pablo Marin-Garcia, Vicente Arnau, Peter D’Eustachio, Lincoln Stein, Henning Hermjakob

ABSTRACT

BackgroundReactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis methods have a broad range of applications in physiological and biomedical research; one of the main problems, from the analysis methods performance point of view, is the constantly increasing size of the data samples.ResultsHere, we present a new high-performance in-memory implementation of the well-established over-representation analysis method. To achieve the target, the over-representation analysis method is divided in four different steps and, for each of them, specific data structures are used to improve performance and minimise the memory footprint. The first step, finding out whether an identifier in the user’s sample corresponds to an entity in Reactome, is addressed using a radix tree as a lookup table. The second step, modelling the proteins, chemicals, their orthologous in other species and their composition in complexes and sets, is addressed with a graph. The third and fourth steps, that aggregate the results and calculate the statistics, are solved with a double-linked tree.ConclusionThrough the use of highly optimised, in-memory data structures and algorithms, Reactome has achieved a stable, high performance pathway analysis service, enabling the analysis of genome-wide datasets within seconds, allowing interactive exploration and analysis of high throughput data. The proposed pathway analysis approach is available in the Reactome production web site either via the AnalysisService for programmatic access or the user submission interface integrated into the PathwayBrowser. Reactome is an open data and open source project and all of its source code, including the one described here, is available in the AnalysisTools repository in the Reactome GitHub (https://github.com/reactome/). More... »

PAGES

142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2

DOI

http://dx.doi.org/10.1186/s12859-017-1559-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084249935

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28249561


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Open Targets, Wellcome Genome Campus, Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/grid.510991.5", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
            "Open Targets, Wellcome Genome Campus, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fabregat", 
        "givenName": "Antonio", 
        "id": "sg:person.01010722032.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010722032.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sidiropoulos", 
        "givenName": "Konstantinos", 
        "id": "sg:person.01062706713.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062706713.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viteri", 
        "givenName": "Guilherme", 
        "id": "sg:person.010255240707.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255240707.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forner", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Medicina Genomica, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.493325.a", 
          "name": [
            "Fundaci\u00f3n Investigaci\u00f3n INCLIVA, Universitat de Val\u00e8ncia, Valencia, Spain", 
            "Instituto de Medicina Genomica, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marin-Garcia", 
        "givenName": "Pablo", 
        "id": "sg:person.01312440135.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312440135.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Integrative Systems Biology (I2SysBio), Universitat de Val\u00e8ncia-CSIC, Paterna, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.507638.f", 
          "name": [
            "Escuela T\u00e9cnica Superior de Ingenier\u00edas, Universitat de Val\u00e8ncia, Valencia, Spain", 
            "Institute for Integrative Systems Biology (I2SysBio), Universitat de Val\u00e8ncia-CSIC, Paterna, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arnau", 
        "givenName": "Vicente", 
        "id": "sg:person.01054627757.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054627757.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NYU Langone Medical Center, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.240324.3", 
          "name": [
            "NYU Langone Medical Center, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Eustachio", 
        "givenName": "Peter", 
        "id": "sg:person.01206747773.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206747773.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Genetics, University of Toronto, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Ontario Institute for Cancer Research, Toronto, Canada", 
            "Department of Molecular Genetics, University of Toronto, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Lincoln", 
        "id": "sg:person.0615607440.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615607440.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, 102206, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.506261.6", 
          "name": [
            "European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK", 
            "State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, 102206, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hermjakob", 
        "givenName": "Henning", 
        "id": "sg:person.01070655672.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070655672.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-8-401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039479467", 
          "https://doi.org/10.1186/1471-2105-8-401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84800-070-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029993287", 
          "https://doi.org/10.1007/978-1-84800-070-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001861326", 
          "https://doi.org/10.1186/1471-2105-11-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-02", 
    "datePublishedReg": "2017-03-02", 
    "description": "BackgroundReactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis methods have a broad range of applications in physiological and biomedical research; one of the main problems, from the analysis methods performance point of view, is the constantly increasing size of the data samples.ResultsHere, we present a new high-performance in-memory implementation of the well-established over-representation analysis method. To achieve the target, the over-representation analysis method is divided in four different steps and, for each of them, specific data structures are used to improve performance and minimise the memory footprint. The first step, finding out whether an identifier in the user\u2019s sample corresponds to an entity in Reactome, is addressed using a radix tree as a lookup table. The second step, modelling the proteins, chemicals, their orthologous in other species and their composition in complexes and sets, is addressed with a graph. The third and fourth steps, that aggregate the results and calculate the statistics, are solved with a double-linked tree.ConclusionThrough the use of highly optimised, in-memory data structures and algorithms, Reactome has achieved a stable, high performance pathway analysis service, enabling the analysis of genome-wide datasets within seconds, allowing interactive exploration and analysis of high throughput data. The proposed pathway analysis approach is available in the Reactome production web site either via the AnalysisService for programmatic access or the user submission interface integrated into the PathwayBrowser. Reactome is an open data and open source project and all of its source code, including the one described here, is available in the AnalysisTools repository in the Reactome GitHub (https://github.com/reactome/).", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12859-017-1559-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3860232", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2697603", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "data structure", 
      "production web sites", 
      "genome-wide datasets", 
      "memory data structures", 
      "open source projects", 
      "specific data structure", 
      "pathway analysis approach", 
      "high-throughput data", 
      "pathway analysis methods", 
      "programmatic access", 
      "memory footprint", 
      "radix tree", 
      "interactive exploration", 
      "genome analysis", 
      "source projects", 
      "source code", 
      "bioinformatics tools", 
      "analysis services", 
      "memory implementation", 
      "open data", 
      "systems biology", 
      "pathway analysis", 
      "memory approach", 
      "Web sites", 
      "pathway knowledge", 
      "Reactome", 
      "user sample", 
      "throughput data", 
      "lookup table", 
      "data samples", 
      "analysis method", 
      "biomedical research", 
      "performance point", 
      "main problems", 
      "trees", 
      "different steps", 
      "basic research", 
      "analysis approach", 
      "GitHub", 
      "biology", 
      "repository", 
      "species", 
      "protein", 
      "algorithm", 
      "dataset", 
      "first step", 
      "identifiers", 
      "second step", 
      "graph", 
      "fourth step", 
      "visualisation", 
      "broad range", 
      "implementation", 
      "code", 
      "services", 
      "step", 
      "ResultsHere", 
      "complexes", 
      "method", 
      "set", 
      "access", 
      "interface", 
      "target", 
      "tool", 
      "data", 
      "sites", 
      "applications", 
      "performance", 
      "table", 
      "analysis", 
      "entities", 
      "project", 
      "research", 
      "structure", 
      "footprint", 
      "modelling", 
      "exploration", 
      "seconds", 
      "composition", 
      "knowledge", 
      "chemicals", 
      "view", 
      "one", 
      "statistics", 
      "point", 
      "use", 
      "samples", 
      "size", 
      "results", 
      "approach", 
      "range", 
      "interpretation", 
      "education", 
      "ConclusionThrough", 
      "problem"
    ], 
    "name": "Reactome pathway analysis: a high-performance in-memory approach", 
    "pagination": "142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084249935"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-017-1559-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28249561"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-017-1559-2", 
      "https://app.dimensions.ai/details/publication/pub.1084249935"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12859-017-1559-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-017-1559-2'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      131 URIs      119 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-017-1559-2 schema:about N8cc99c0405914deea2e5fc2726baaf57
2 Na8e73b4856774a44bf6628ce48e0c5b1
3 Nb3ca399d205c4a0dac21fde5a9af729b
4 Nb58697d0ce444050b6e1ab9475e1f598
5 Nd3b80d16ec9e4580a22799c2df22bff1
6 Ne9abbf2dcff14513831a797ba51079a8
7 Nf44775cbfd5a4e5caa105625c53d9dbc
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N02901259c20545a0a1eb8bf2687ba9fc
11 schema:citation sg:pub.10.1007/978-1-84800-070-4
12 sg:pub.10.1038/nprot.2008.211
13 sg:pub.10.1186/1471-2105-11-5
14 sg:pub.10.1186/1471-2105-8-401
15 schema:datePublished 2017-03-02
16 schema:datePublishedReg 2017-03-02
17 schema:description BackgroundReactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis methods have a broad range of applications in physiological and biomedical research; one of the main problems, from the analysis methods performance point of view, is the constantly increasing size of the data samples.ResultsHere, we present a new high-performance in-memory implementation of the well-established over-representation analysis method. To achieve the target, the over-representation analysis method is divided in four different steps and, for each of them, specific data structures are used to improve performance and minimise the memory footprint. The first step, finding out whether an identifier in the user’s sample corresponds to an entity in Reactome, is addressed using a radix tree as a lookup table. The second step, modelling the proteins, chemicals, their orthologous in other species and their composition in complexes and sets, is addressed with a graph. The third and fourth steps, that aggregate the results and calculate the statistics, are solved with a double-linked tree.ConclusionThrough the use of highly optimised, in-memory data structures and algorithms, Reactome has achieved a stable, high performance pathway analysis service, enabling the analysis of genome-wide datasets within seconds, allowing interactive exploration and analysis of high throughput data. The proposed pathway analysis approach is available in the Reactome production web site either via the AnalysisService for programmatic access or the user submission interface integrated into the PathwayBrowser. Reactome is an open data and open source project and all of its source code, including the one described here, is available in the AnalysisTools repository in the Reactome GitHub (https://github.com/reactome/).
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N11956ee4f4af422c9a0bc49f173b182a
21 N1c0d9b28f075428fbd227805f473df5f
22 sg:journal.1023786
23 schema:keywords ConclusionThrough
24 GitHub
25 Reactome
26 ResultsHere
27 Web sites
28 access
29 algorithm
30 analysis
31 analysis approach
32 analysis method
33 analysis services
34 applications
35 approach
36 basic research
37 bioinformatics tools
38 biology
39 biomedical research
40 broad range
41 chemicals
42 code
43 complexes
44 composition
45 data
46 data samples
47 data structure
48 dataset
49 different steps
50 education
51 entities
52 exploration
53 first step
54 footprint
55 fourth step
56 genome analysis
57 genome-wide datasets
58 graph
59 high-throughput data
60 identifiers
61 implementation
62 interactive exploration
63 interface
64 interpretation
65 knowledge
66 lookup table
67 main problems
68 memory approach
69 memory data structures
70 memory footprint
71 memory implementation
72 method
73 modelling
74 one
75 open data
76 open source projects
77 pathway analysis
78 pathway analysis approach
79 pathway analysis methods
80 pathway knowledge
81 performance
82 performance point
83 point
84 problem
85 production web sites
86 programmatic access
87 project
88 protein
89 radix tree
90 range
91 repository
92 research
93 results
94 samples
95 second step
96 seconds
97 services
98 set
99 sites
100 size
101 source code
102 source projects
103 species
104 specific data structure
105 statistics
106 step
107 structure
108 systems biology
109 table
110 target
111 throughput data
112 tool
113 trees
114 use
115 user sample
116 view
117 visualisation
118 schema:name Reactome pathway analysis: a high-performance in-memory approach
119 schema:pagination 142
120 schema:productId N314f5e03a43649f6b5ed8a11e8dc033e
121 Nb7b49c086b8f414889cb7624c2ba4ef9
122 Nda82b3aab3f74c00a75d74759837de91
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249935
124 https://doi.org/10.1186/s12859-017-1559-2
125 schema:sdDatePublished 2022-11-24T21:02
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher Nca3771df31924fb4b76b23d316f9f00d
128 schema:url https://doi.org/10.1186/s12859-017-1559-2
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N02901259c20545a0a1eb8bf2687ba9fc rdf:first sg:person.01010722032.12
133 rdf:rest N7c684ecf6d61443398cd7a036f53b73b
134 N06d052cf68cd41d489c66d8c54e4b595 rdf:first sg:person.01070655672.90
135 rdf:rest rdf:nil
136 N11956ee4f4af422c9a0bc49f173b182a schema:issueNumber 1
137 rdf:type schema:PublicationIssue
138 N18acab5823fd4f85b4e952370c942af5 rdf:first sg:person.010255240707.43
139 rdf:rest Ne2325decc5864190bb3b517dfe1f0a01
140 N1c0d9b28f075428fbd227805f473df5f schema:volumeNumber 18
141 rdf:type schema:PublicationVolume
142 N2a617f52c52f4d5893c79869998c99eb schema:affiliation grid-institutes:None
143 schema:familyName Forner
144 schema:givenName Oscar
145 rdf:type schema:Person
146 N314f5e03a43649f6b5ed8a11e8dc033e schema:name pubmed_id
147 schema:value 28249561
148 rdf:type schema:PropertyValue
149 N33638b89495144cca94485e86e4f0845 rdf:first sg:person.01054627757.76
150 rdf:rest Nf98c0ed702d04309a024118b6aa07064
151 N62735982e4f64f48b9f921a1c291000d rdf:first sg:person.0615607440.16
152 rdf:rest N06d052cf68cd41d489c66d8c54e4b595
153 N7c684ecf6d61443398cd7a036f53b73b rdf:first sg:person.01062706713.32
154 rdf:rest N18acab5823fd4f85b4e952370c942af5
155 N8cc99c0405914deea2e5fc2726baaf57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Humans
157 rdf:type schema:DefinedTerm
158 Na8e73b4856774a44bf6628ce48e0c5b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Proteins
160 rdf:type schema:DefinedTerm
161 Nb3ca399d205c4a0dac21fde5a9af729b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Software
163 rdf:type schema:DefinedTerm
164 Nb58697d0ce444050b6e1ab9475e1f598 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Nucleic Acids
166 rdf:type schema:DefinedTerm
167 Nb7b49c086b8f414889cb7624c2ba4ef9 schema:name doi
168 schema:value 10.1186/s12859-017-1559-2
169 rdf:type schema:PropertyValue
170 Nca3771df31924fb4b76b23d316f9f00d schema:name Springer Nature - SN SciGraph project
171 rdf:type schema:Organization
172 Nd3b80d16ec9e4580a22799c2df22bff1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Algorithms
174 rdf:type schema:DefinedTerm
175 Nda82b3aab3f74c00a75d74759837de91 schema:name dimensions_id
176 schema:value pub.1084249935
177 rdf:type schema:PropertyValue
178 Ne2325decc5864190bb3b517dfe1f0a01 rdf:first N2a617f52c52f4d5893c79869998c99eb
179 rdf:rest Nec69136e6046436bb2e585a186f347cf
180 Ne9abbf2dcff14513831a797ba51079a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Computational Biology
182 rdf:type schema:DefinedTerm
183 Nec69136e6046436bb2e585a186f347cf rdf:first sg:person.01312440135.65
184 rdf:rest N33638b89495144cca94485e86e4f0845
185 Nf44775cbfd5a4e5caa105625c53d9dbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Databases, Factual
187 rdf:type schema:DefinedTerm
188 Nf98c0ed702d04309a024118b6aa07064 rdf:first sg:person.01206747773.46
189 rdf:rest N62735982e4f64f48b9f921a1c291000d
190 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
191 schema:name Information and Computing Sciences
192 rdf:type schema:DefinedTerm
193 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
194 schema:name Artificial Intelligence and Image Processing
195 rdf:type schema:DefinedTerm
196 sg:grant.2697603 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1559-2
197 rdf:type schema:MonetaryGrant
198 sg:grant.3860232 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-017-1559-2
199 rdf:type schema:MonetaryGrant
200 sg:journal.1023786 schema:issn 1471-2105
201 schema:name BMC Bioinformatics
202 schema:publisher Springer Nature
203 rdf:type schema:Periodical
204 sg:person.01010722032.12 schema:affiliation grid-institutes:grid.510991.5
205 schema:familyName Fabregat
206 schema:givenName Antonio
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010722032.12
208 rdf:type schema:Person
209 sg:person.010255240707.43 schema:affiliation grid-institutes:None
210 schema:familyName Viteri
211 schema:givenName Guilherme
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255240707.43
213 rdf:type schema:Person
214 sg:person.01054627757.76 schema:affiliation grid-institutes:grid.507638.f
215 schema:familyName Arnau
216 schema:givenName Vicente
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054627757.76
218 rdf:type schema:Person
219 sg:person.01062706713.32 schema:affiliation grid-institutes:None
220 schema:familyName Sidiropoulos
221 schema:givenName Konstantinos
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062706713.32
223 rdf:type schema:Person
224 sg:person.01070655672.90 schema:affiliation grid-institutes:grid.506261.6
225 schema:familyName Hermjakob
226 schema:givenName Henning
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070655672.90
228 rdf:type schema:Person
229 sg:person.01206747773.46 schema:affiliation grid-institutes:grid.240324.3
230 schema:familyName D’Eustachio
231 schema:givenName Peter
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206747773.46
233 rdf:type schema:Person
234 sg:person.01312440135.65 schema:affiliation grid-institutes:grid.493325.a
235 schema:familyName Marin-Garcia
236 schema:givenName Pablo
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312440135.65
238 rdf:type schema:Person
239 sg:person.0615607440.16 schema:affiliation grid-institutes:grid.17063.33
240 schema:familyName Stein
241 schema:givenName Lincoln
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615607440.16
243 rdf:type schema:Person
244 sg:pub.10.1007/978-1-84800-070-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029993287
245 https://doi.org/10.1007/978-1-84800-070-4
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
248 https://doi.org/10.1038/nprot.2008.211
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1471-2105-11-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001861326
251 https://doi.org/10.1186/1471-2105-11-5
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2105-8-401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039479467
254 https://doi.org/10.1186/1471-2105-8-401
255 rdf:type schema:CreativeWork
256 grid-institutes:None schema:alternateName European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
257 schema:name European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
258 rdf:type schema:Organization
259 grid-institutes:grid.17063.33 schema:alternateName Department of Molecular Genetics, University of Toronto, Toronto, Canada
260 schema:name Department of Molecular Genetics, University of Toronto, Toronto, Canada
261 Ontario Institute for Cancer Research, Toronto, Canada
262 rdf:type schema:Organization
263 grid-institutes:grid.240324.3 schema:alternateName NYU Langone Medical Center, New York, USA
264 schema:name NYU Langone Medical Center, New York, USA
265 rdf:type schema:Organization
266 grid-institutes:grid.493325.a schema:alternateName Instituto de Medicina Genomica, Valencia, Spain
267 schema:name Fundación Investigación INCLIVA, Universitat de València, Valencia, Spain
268 Instituto de Medicina Genomica, Valencia, Spain
269 rdf:type schema:Organization
270 grid-institutes:grid.506261.6 schema:alternateName State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, 102206, Beijing, China
271 schema:name European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
272 State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, 102206, Beijing, China
273 rdf:type schema:Organization
274 grid-institutes:grid.507638.f schema:alternateName Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
275 schema:name Escuela Técnica Superior de Ingenierías, Universitat de València, Valencia, Spain
276 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
277 rdf:type schema:Organization
278 grid-institutes:grid.510991.5 schema:alternateName Open Targets, Wellcome Genome Campus, Hinxton, UK
279 schema:name European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
280 Open Targets, Wellcome Genome Campus, Hinxton, UK
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...