Negative binomial mixed models for analyzing microbiome count data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01-03

AUTHORS

Xinyan Zhang, Himel Mallick, Zaixiang Tang, Lei Zhang, Xiangqin Cui, Andrew K. Benson, Nengjun Yi

ABSTRACT

BackgroundRecent advances in next-generation sequencing (NGS) technology enable researchers to collect a large volume of metagenomic sequencing data. These data provide valuable resources for investigating interactions between the microbiome and host environmental/clinical factors. In addition to the well-known properties of microbiome count measurements, for example, varied total sequence reads across samples, over-dispersion and zero-inflation, microbiome studies usually collect samples with hierarchical structures, which introduce correlation among the samples and thus further complicate the analysis and interpretation of microbiome count data.ResultsIn this article, we propose negative binomial mixed models (NBMMs) for detecting the association between the microbiome and host environmental/clinical factors for correlated microbiome count data. Although having not dealt with zero-inflation, the proposed mixed-effects models account for correlation among the samples by incorporating random effects into the commonly used fixed-effects negative binomial model, and can efficiently handle over-dispersion and varying total reads. We have developed a flexible and efficient IWLS (Iterative Weighted Least Squares) algorithm to fit the proposed NBMMs by taking advantage of the standard procedure for fitting the linear mixed models.ConclusionsWe evaluate and demonstrate the proposed method via extensive simulation studies and the application to mouse gut microbiome data. The results show that the proposed method has desirable properties and outperform the previously used methods in terms of both empirical power and Type I error. The method has been incorporated into the freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/ and http://github.com/abbyyan3/BhGLM), providing a useful tool for analyzing microbiome data. More... »

PAGES

4

References to SciGraph publications

  • 2010-10-30. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree in BMC BIOINFORMATICS
  • 2006-12. An obesity-associated gut microbiome with increased capacity for energy harvest in NATURE
  • 2000. Mixed-Effects Models in Sand S-PLUS in NONE
  • 1989. Generalized Linear Models in NONE
  • 2015-03-04. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome in NATURE COMMUNICATIONS
  • 2012-05-09. Human gut microbiome viewed across age and geography in NATURE
  • 2014-08-31. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity in NATURE
  • 2013-03-05. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli in INTERNATIONAL JOURNAL OF OBESITY
  • 2014-12-17. Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice in GENOME BIOLOGY
  • 2014-02-03. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women in MICROBIOME
  • 2013-09-17. Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin blistering in NATURE COMMUNICATIONS
  • 2008-10. Worlds within worlds: evolution of the vertebrate gut microbiota in NATURE REVIEWS MICROBIOLOGY
  • 2011-06-15. Progressive dementia associated with ataxia or obesity in patients with Tropheryma whipplei encephalitis in BMC INFECTIOUS DISEASES
  • 2010-03-02. A scaling normalization method for differential expression analysis of RNA-seq data in GENOME BIOLOGY
  • 2010-01-20. Metagenomics: Facts and Artifacts, and Computational Challenges in JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
  • 2008-11-30. A core gut microbiome in obese and lean twins in NATURE
  • 2011-06-24. Metagenomic biomarker discovery and explanation in GENOME BIOLOGY
  • 2010-10-27. Differential expression analysis for sequence count data in GENOME BIOLOGY
  • 2011-03-16. Unravelling the effects of the environment and host genotype on the gut microbiome in NATURE REVIEWS MICROBIOLOGY
  • 2002. Modern Applied Statistics with S in NONE
  • 2010-11-25. The Future of microbial metagenomics (or is ignorance bliss?) in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2011-06-30. DNACLUST: accurate and efficient clustering of phylogenetic marker genes in BMC BIOINFORMATICS
  • 2002-01-29. Exploring prokaryotic diversity in the genomic era in GENOME BIOLOGY
  • 2012-03-13. The human microbiome: at the interface of health and disease in NATURE REVIEWS GENETICS
  • 2013-09-29. Differential abundance analysis for microbial marker-gene surveys in NATURE METHODS
  • 2015-09-15. Host genetic variation impacts microbiome composition across human body sites in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12859-016-1441-7

    DOI

    http://dx.doi.org/10.1186/s12859-016-1441-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019274698

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28049409


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Internet", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intestines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Inbred C57BL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "User-Computer Interface", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Alabama at Birmingham, 35294-0022, Birmingham, AL, USA", 
              "id": "http://www.grid.ac/institutes/grid.265892.2", 
              "name": [
                "Department of Biostatistics, University of Alabama at Birmingham, 35294-0022, Birmingham, AL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xinyan", 
            "id": "sg:person.012162541333.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162541333.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Medical and Population Genetics, the Broad Institute, 02142, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA", 
                "Program in Medical and Population Genetics, the Broad Institute, 02142, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mallick", 
            "givenName": "Himel", 
            "id": "sg:person.01356136132.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356136132.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Department of Biostatistics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Zaixiang", 
            "id": "sg:person.010554507211.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554507211.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Department of Biostatistics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Lei", 
            "id": "sg:person.010062160527.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010062160527.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Alabama at Birmingham, 35294-0022, Birmingham, AL, USA", 
              "id": "http://www.grid.ac/institutes/grid.265892.2", 
              "name": [
                "Department of Biostatistics, University of Alabama at Birmingham, 35294-0022, Birmingham, AL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cui", 
            "givenName": "Xiangqin", 
            "id": "sg:person.01030507614.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030507614.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Food Science and Technology and Core for Applied Genomics and Ecology, University of Nebraska, 68583, Lincoln, NE, USA", 
              "id": "http://www.grid.ac/institutes/grid.24434.35", 
              "name": [
                "Department of Food Science and Technology and Core for Applied Genomics and Ecology, University of Nebraska, 68583, Lincoln, NE, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benson", 
            "givenName": "Andrew K.", 
            "id": "sg:person.01033231122.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033231122.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Alabama at Birmingham, 35294-0022, Birmingham, AL, USA", 
              "id": "http://www.grid.ac/institutes/grid.265892.2", 
              "name": [
                "Department of Biostatistics, University of Alabama at Birmingham, 35294-0022, Birmingham, AL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yi", 
            "givenName": "Nengjun", 
            "id": "sg:person.01161530212.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161530212.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-11-538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008466974", 
              "https://doi.org/10.1186/1471-2105-11-538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-0318-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109704884", 
              "https://doi.org/10.1007/978-1-4419-0318-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11390-010-9306-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015316974", 
              "https://doi.org/10.1007/s11390-010-9306-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-6-r60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000243423", 
              "https://doi.org/10.1186/gb-2011-12-6-r60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21706-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613449", 
              "https://doi.org/10.1007/978-0-387-21706-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015675255", 
              "https://doi.org/10.1038/nrmicro1978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031289083", 
              "https://doi.org/10.1186/gb-2010-11-10-r106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2002-3-2-reviews0003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023733744", 
              "https://doi.org/10.1186/gb-2002-3-2-reviews0003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3242-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705877", 
              "https://doi.org/10.1007/978-1-4899-3242-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2013.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000618463", 
              "https://doi.org/10.1038/ijo.2013.20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050221588", 
              "https://doi.org/10.1038/ncomms7440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023893418", 
              "https://doi.org/10.1038/nature05414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030170002", 
              "https://doi.org/10.1038/nature07540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2334-11-171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040144480", 
              "https://doi.org/10.1186/1471-2334-11-171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031473142", 
              "https://doi.org/10.1186/1471-2105-12-271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050509557", 
              "https://doi.org/10.1186/gb-2010-11-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042220655", 
              "https://doi.org/10.1186/2049-2618-2-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0759-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017080966", 
              "https://doi.org/10.1186/s13059-015-0759-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052378845", 
              "https://doi.org/10.1038/nature11053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014152578", 
              "https://doi.org/10.1038/ismej.2010.178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045931365", 
              "https://doi.org/10.1038/nrmicro2540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020810289", 
              "https://doi.org/10.1038/nature13398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032074225", 
              "https://doi.org/10.1038/ncomms3462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139060", 
              "https://doi.org/10.1038/nmeth.2658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0552-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024893270", 
              "https://doi.org/10.1186/s13059-014-0552-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018201256", 
              "https://doi.org/10.1038/nrg3182"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01-03", 
        "datePublishedReg": "2017-01-03", 
        "description": "BackgroundRecent advances in next-generation sequencing (NGS) technology enable researchers to collect a large volume of metagenomic sequencing data. These data provide valuable resources for investigating interactions between the microbiome and host environmental/clinical factors. In addition to the well-known properties of microbiome count measurements, for example, varied total sequence reads across samples, over-dispersion and zero-inflation, microbiome studies usually collect samples with hierarchical structures, which introduce correlation among the samples and thus further complicate the analysis and interpretation of microbiome count data.ResultsIn this article, we propose negative binomial mixed models (NBMMs) for detecting the association between the microbiome and host environmental/clinical factors for correlated microbiome count data. Although having not dealt with zero-inflation, the proposed mixed-effects models account for correlation among the samples by incorporating random effects into the commonly used fixed-effects negative binomial model, and can efficiently handle over-dispersion and varying total reads. We have developed a flexible and efficient IWLS (Iterative Weighted Least Squares) algorithm to fit the proposed NBMMs by taking advantage of the standard procedure for fitting the linear mixed models.ConclusionsWe evaluate and demonstrate the proposed method via extensive simulation studies and the application to mouse gut microbiome data. The results show that the proposed method has desirable properties and outperform the previously used methods in terms of both empirical power and Type I error. The method has been incorporated into the freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/ and http://github.com/abbyyan3/BhGLM), providing a useful tool for analyzing microbiome data.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12859-016-1441-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2668625", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4242542", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2518132", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8190746", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8352089", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "microbiome count data", 
          "negative binomial mixed models", 
          "zero-inflation", 
          "count data", 
          "available R package BhGLM", 
          "binomial mixed models", 
          "extensive simulation study", 
          "microbiome data", 
          "empirical power", 
          "simulation study", 
          "random effects", 
          "negative binomial model", 
          "binomial model", 
          "mixed models", 
          "desirable properties", 
          "mixed effects models", 
          "metagenomic sequencing data", 
          "model", 
          "fixed-effects negative binomial models", 
          "count measurements", 
          "gut microbiome data", 
          "hierarchical structure", 
          "dispersion", 
          "IWLS", 
          "properties", 
          "microbiome studies", 
          "useful tool", 
          "terms", 
          "applications", 
          "data", 
          "power", 
          "structure", 
          "measurements", 
          "advantages", 
          "tool", 
          "interpretation", 
          "procedure", 
          "results", 
          "correlation", 
          "large volumes", 
          "standard procedure", 
          "analysis", 
          "interaction", 
          "sequence", 
          "sequencing data", 
          "samples", 
          "next-generation sequencing technologies", 
          "researchers", 
          "advances", 
          "valuable resource", 
          "article", 
          "effect", 
          "resources", 
          "sequencing technologies", 
          "volume", 
          "addition", 
          "technology", 
          "type I", 
          "study", 
          "factors", 
          "total reads", 
          "reads", 
          "host", 
          "total sequence", 
          "ConclusionsWe", 
          "association", 
          "microbiome", 
          "method", 
          "example", 
          "ResultsIn", 
          "clinical factors", 
          "BackgroundRecent advances"
        ], 
        "name": "Negative binomial mixed models for analyzing microbiome count data", 
        "pagination": "4", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019274698"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12859-016-1441-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28049409"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12859-016-1441-7", 
          "https://app.dimensions.ai/details/publication/pub.1019274698"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_726.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12859-016-1441-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1441-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1441-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1441-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1441-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    354 TRIPLES      21 PREDICATES      136 URIs      102 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12859-016-1441-7 schema:about N0bd63d62202f4e9ea606acf38a35c3ba
    2 N0df1f30fd8bf4be293711fd53ab02ca6
    3 N37527aaf4e3d431db5c371d3a692661b
    4 N452806c2807e4742acced341c704333f
    5 N46a268c73ac4441d89271ba298232854
    6 N54952996d4bf4088a1f869cbdc7a5902
    7 N5d3fae2474b44213a5a50fb56332d083
    8 N78b586bb5d3c4c2181a2702a7da283dc
    9 N7abd95c45ff24d7aa08a4550060e9bca
    10 N9c2f880f5f944d3b93d320883ce539a6
    11 N9e87ca89332c4269941122e4bb4f3e0d
    12 Naca15f673ced498d890bfdfaf279e6e7
    13 Ndacfef0c0eae43668ce0151b82e3c5c9
    14 Nf241886125ad417ab45a990bd4a06b9f
    15 anzsrc-for:01
    16 anzsrc-for:0104
    17 schema:author N9709bceefc5645cfa3c4de229d58b842
    18 schema:citation sg:pub.10.1007/978-0-387-21706-2
    19 sg:pub.10.1007/978-1-4419-0318-1
    20 sg:pub.10.1007/978-1-4899-3242-6
    21 sg:pub.10.1007/s11390-010-9306-4
    22 sg:pub.10.1038/ijo.2013.20
    23 sg:pub.10.1038/ismej.2010.178
    24 sg:pub.10.1038/nature05414
    25 sg:pub.10.1038/nature07540
    26 sg:pub.10.1038/nature11053
    27 sg:pub.10.1038/nature13398
    28 sg:pub.10.1038/ncomms3462
    29 sg:pub.10.1038/ncomms7440
    30 sg:pub.10.1038/nmeth.2658
    31 sg:pub.10.1038/nrg3182
    32 sg:pub.10.1038/nrmicro1978
    33 sg:pub.10.1038/nrmicro2540
    34 sg:pub.10.1186/1471-2105-11-538
    35 sg:pub.10.1186/1471-2105-12-271
    36 sg:pub.10.1186/1471-2334-11-171
    37 sg:pub.10.1186/2049-2618-2-4
    38 sg:pub.10.1186/gb-2002-3-2-reviews0003
    39 sg:pub.10.1186/gb-2010-11-10-r106
    40 sg:pub.10.1186/gb-2010-11-3-r25
    41 sg:pub.10.1186/gb-2011-12-6-r60
    42 sg:pub.10.1186/s13059-014-0552-6
    43 sg:pub.10.1186/s13059-015-0759-1
    44 schema:datePublished 2017-01-03
    45 schema:datePublishedReg 2017-01-03
    46 schema:description BackgroundRecent advances in next-generation sequencing (NGS) technology enable researchers to collect a large volume of metagenomic sequencing data. These data provide valuable resources for investigating interactions between the microbiome and host environmental/clinical factors. In addition to the well-known properties of microbiome count measurements, for example, varied total sequence reads across samples, over-dispersion and zero-inflation, microbiome studies usually collect samples with hierarchical structures, which introduce correlation among the samples and thus further complicate the analysis and interpretation of microbiome count data.ResultsIn this article, we propose negative binomial mixed models (NBMMs) for detecting the association between the microbiome and host environmental/clinical factors for correlated microbiome count data. Although having not dealt with zero-inflation, the proposed mixed-effects models account for correlation among the samples by incorporating random effects into the commonly used fixed-effects negative binomial model, and can efficiently handle over-dispersion and varying total reads. We have developed a flexible and efficient IWLS (Iterative Weighted Least Squares) algorithm to fit the proposed NBMMs by taking advantage of the standard procedure for fitting the linear mixed models.ConclusionsWe evaluate and demonstrate the proposed method via extensive simulation studies and the application to mouse gut microbiome data. The results show that the proposed method has desirable properties and outperform the previously used methods in terms of both empirical power and Type I error. The method has been incorporated into the freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/ and http://github.com/abbyyan3/BhGLM), providing a useful tool for analyzing microbiome data.
    47 schema:genre article
    48 schema:isAccessibleForFree true
    49 schema:isPartOf Na050c7ad782245dba47ac4981bc96c56
    50 Nc9868f2ad61345a38f9972245287214d
    51 sg:journal.1023786
    52 schema:keywords BackgroundRecent advances
    53 ConclusionsWe
    54 IWLS
    55 ResultsIn
    56 addition
    57 advances
    58 advantages
    59 analysis
    60 applications
    61 article
    62 association
    63 available R package BhGLM
    64 binomial mixed models
    65 binomial model
    66 clinical factors
    67 correlation
    68 count data
    69 count measurements
    70 data
    71 desirable properties
    72 dispersion
    73 effect
    74 empirical power
    75 example
    76 extensive simulation study
    77 factors
    78 fixed-effects negative binomial models
    79 gut microbiome data
    80 hierarchical structure
    81 host
    82 interaction
    83 interpretation
    84 large volumes
    85 measurements
    86 metagenomic sequencing data
    87 method
    88 microbiome
    89 microbiome count data
    90 microbiome data
    91 microbiome studies
    92 mixed effects models
    93 mixed models
    94 model
    95 negative binomial mixed models
    96 negative binomial model
    97 next-generation sequencing technologies
    98 power
    99 procedure
    100 properties
    101 random effects
    102 reads
    103 researchers
    104 resources
    105 results
    106 samples
    107 sequence
    108 sequencing data
    109 sequencing technologies
    110 simulation study
    111 standard procedure
    112 structure
    113 study
    114 technology
    115 terms
    116 tool
    117 total reads
    118 total sequence
    119 type I
    120 useful tool
    121 valuable resource
    122 volume
    123 zero-inflation
    124 schema:name Negative binomial mixed models for analyzing microbiome count data
    125 schema:pagination 4
    126 schema:productId N777ba3681dcc400fb81c03ed6a71bdc0
    127 Ncd8d211eac3a487385b2b5af729efb0b
    128 Nd4aaf4cd603c4938a718776d1256eda1
    129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019274698
    130 https://doi.org/10.1186/s12859-016-1441-7
    131 schema:sdDatePublished 2022-09-02T16:02
    132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    133 schema:sdPublisher Nee9d5af6acde4733b9701b1da0c8290f
    134 schema:url https://doi.org/10.1186/s12859-016-1441-7
    135 sgo:license sg:explorer/license/
    136 sgo:sdDataset articles
    137 rdf:type schema:ScholarlyArticle
    138 N0bcda48a278c4b7a98d5c06233e0c9e5 rdf:first sg:person.01030507614.09
    139 rdf:rest N4a890e04cb914990b88dca3f5f7bde46
    140 N0bd63d62202f4e9ea606acf38a35c3ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name RNA, Ribosomal, 16S
    142 rdf:type schema:DefinedTerm
    143 N0df1f30fd8bf4be293711fd53ab02ca6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Algorithms
    145 rdf:type schema:DefinedTerm
    146 N1694ac0523054cfdaa96df3663bd2374 rdf:first sg:person.010062160527.72
    147 rdf:rest N0bcda48a278c4b7a98d5c06233e0c9e5
    148 N232308e6b862475ca9a4f3580ac1b67b rdf:first sg:person.01356136132.18
    149 rdf:rest N29d49d65c5d54620bb558d6a3ca79743
    150 N29d49d65c5d54620bb558d6a3ca79743 rdf:first sg:person.010554507211.54
    151 rdf:rest N1694ac0523054cfdaa96df3663bd2374
    152 N37527aaf4e3d431db5c371d3a692661b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Mice, Inbred C57BL
    154 rdf:type schema:DefinedTerm
    155 N452806c2807e4742acced341c704333f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name High-Throughput Nucleotide Sequencing
    157 rdf:type schema:DefinedTerm
    158 N46a268c73ac4441d89271ba298232854 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Intestines
    160 rdf:type schema:DefinedTerm
    161 N4a890e04cb914990b88dca3f5f7bde46 rdf:first sg:person.01033231122.59
    162 rdf:rest N81d361ec84184c338dc749e7f9226351
    163 N54952996d4bf4088a1f869cbdc7a5902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name User-Computer Interface
    165 rdf:type schema:DefinedTerm
    166 N5d3fae2474b44213a5a50fb56332d083 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Models, Statistical
    168 rdf:type schema:DefinedTerm
    169 N777ba3681dcc400fb81c03ed6a71bdc0 schema:name doi
    170 schema:value 10.1186/s12859-016-1441-7
    171 rdf:type schema:PropertyValue
    172 N78b586bb5d3c4c2181a2702a7da283dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Mice
    174 rdf:type schema:DefinedTerm
    175 N7abd95c45ff24d7aa08a4550060e9bca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Bacteria
    177 rdf:type schema:DefinedTerm
    178 N81d361ec84184c338dc749e7f9226351 rdf:first sg:person.01161530212.41
    179 rdf:rest rdf:nil
    180 N9709bceefc5645cfa3c4de229d58b842 rdf:first sg:person.012162541333.05
    181 rdf:rest N232308e6b862475ca9a4f3580ac1b67b
    182 N9c2f880f5f944d3b93d320883ce539a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Microbiota
    184 rdf:type schema:DefinedTerm
    185 N9e87ca89332c4269941122e4bb4f3e0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Male
    187 rdf:type schema:DefinedTerm
    188 Na050c7ad782245dba47ac4981bc96c56 schema:volumeNumber 18
    189 rdf:type schema:PublicationVolume
    190 Naca15f673ced498d890bfdfaf279e6e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Humans
    192 rdf:type schema:DefinedTerm
    193 Nc9868f2ad61345a38f9972245287214d schema:issueNumber 1
    194 rdf:type schema:PublicationIssue
    195 Ncd8d211eac3a487385b2b5af729efb0b schema:name pubmed_id
    196 schema:value 28049409
    197 rdf:type schema:PropertyValue
    198 Nd4aaf4cd603c4938a718776d1256eda1 schema:name dimensions_id
    199 schema:value pub.1019274698
    200 rdf:type schema:PropertyValue
    201 Ndacfef0c0eae43668ce0151b82e3c5c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Internet
    203 rdf:type schema:DefinedTerm
    204 Nee9d5af6acde4733b9701b1da0c8290f schema:name Springer Nature - SN SciGraph project
    205 rdf:type schema:Organization
    206 Nf241886125ad417ab45a990bd4a06b9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Animals
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Mathematical Sciences
    211 rdf:type schema:DefinedTerm
    212 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    213 schema:name Statistics
    214 rdf:type schema:DefinedTerm
    215 sg:grant.2518132 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1441-7
    216 rdf:type schema:MonetaryGrant
    217 sg:grant.2668625 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1441-7
    218 rdf:type schema:MonetaryGrant
    219 sg:grant.4242542 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1441-7
    220 rdf:type schema:MonetaryGrant
    221 sg:grant.8190746 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1441-7
    222 rdf:type schema:MonetaryGrant
    223 sg:grant.8352089 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1441-7
    224 rdf:type schema:MonetaryGrant
    225 sg:journal.1023786 schema:issn 1471-2105
    226 schema:name BMC Bioinformatics
    227 schema:publisher Springer Nature
    228 rdf:type schema:Periodical
    229 sg:person.010062160527.72 schema:affiliation grid-institutes:grid.263761.7
    230 schema:familyName Zhang
    231 schema:givenName Lei
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010062160527.72
    233 rdf:type schema:Person
    234 sg:person.01030507614.09 schema:affiliation grid-institutes:grid.265892.2
    235 schema:familyName Cui
    236 schema:givenName Xiangqin
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030507614.09
    238 rdf:type schema:Person
    239 sg:person.01033231122.59 schema:affiliation grid-institutes:grid.24434.35
    240 schema:familyName Benson
    241 schema:givenName Andrew K.
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033231122.59
    243 rdf:type schema:Person
    244 sg:person.010554507211.54 schema:affiliation grid-institutes:grid.263761.7
    245 schema:familyName Tang
    246 schema:givenName Zaixiang
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554507211.54
    248 rdf:type schema:Person
    249 sg:person.01161530212.41 schema:affiliation grid-institutes:grid.265892.2
    250 schema:familyName Yi
    251 schema:givenName Nengjun
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161530212.41
    253 rdf:type schema:Person
    254 sg:person.012162541333.05 schema:affiliation grid-institutes:grid.265892.2
    255 schema:familyName Zhang
    256 schema:givenName Xinyan
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162541333.05
    258 rdf:type schema:Person
    259 sg:person.01356136132.18 schema:affiliation grid-institutes:grid.66859.34
    260 schema:familyName Mallick
    261 schema:givenName Himel
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356136132.18
    263 rdf:type schema:Person
    264 sg:pub.10.1007/978-0-387-21706-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613449
    265 https://doi.org/10.1007/978-0-387-21706-2
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/978-1-4419-0318-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109704884
    268 https://doi.org/10.1007/978-1-4419-0318-1
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/978-1-4899-3242-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705877
    271 https://doi.org/10.1007/978-1-4899-3242-6
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s11390-010-9306-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015316974
    274 https://doi.org/10.1007/s11390-010-9306-4
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/ijo.2013.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000618463
    277 https://doi.org/10.1038/ijo.2013.20
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/ismej.2010.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014152578
    280 https://doi.org/10.1038/ismej.2010.178
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nature05414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023893418
    283 https://doi.org/10.1038/nature05414
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
    286 https://doi.org/10.1038/nature07540
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nature11053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052378845
    289 https://doi.org/10.1038/nature11053
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/nature13398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020810289
    292 https://doi.org/10.1038/nature13398
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/ncomms3462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032074225
    295 https://doi.org/10.1038/ncomms3462
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/ncomms7440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050221588
    298 https://doi.org/10.1038/ncomms7440
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nmeth.2658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139060
    301 https://doi.org/10.1038/nmeth.2658
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nrg3182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018201256
    304 https://doi.org/10.1038/nrg3182
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nrmicro1978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015675255
    307 https://doi.org/10.1038/nrmicro1978
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/nrmicro2540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045931365
    310 https://doi.org/10.1038/nrmicro2540
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/1471-2105-11-538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008466974
    313 https://doi.org/10.1186/1471-2105-11-538
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/1471-2105-12-271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031473142
    316 https://doi.org/10.1186/1471-2105-12-271
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/1471-2334-11-171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040144480
    319 https://doi.org/10.1186/1471-2334-11-171
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/2049-2618-2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042220655
    322 https://doi.org/10.1186/2049-2618-2-4
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/gb-2002-3-2-reviews0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023733744
    325 https://doi.org/10.1186/gb-2002-3-2-reviews0003
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
    328 https://doi.org/10.1186/gb-2010-11-10-r106
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1186/gb-2010-11-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050509557
    331 https://doi.org/10.1186/gb-2010-11-3-r25
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/gb-2011-12-6-r60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243423
    334 https://doi.org/10.1186/gb-2011-12-6-r60
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/s13059-014-0552-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024893270
    337 https://doi.org/10.1186/s13059-014-0552-6
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/s13059-015-0759-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017080966
    340 https://doi.org/10.1186/s13059-015-0759-1
    341 rdf:type schema:CreativeWork
    342 grid-institutes:grid.24434.35 schema:alternateName Department of Food Science and Technology and Core for Applied Genomics and Ecology, University of Nebraska, 68583, Lincoln, NE, USA
    343 schema:name Department of Food Science and Technology and Core for Applied Genomics and Ecology, University of Nebraska, 68583, Lincoln, NE, USA
    344 rdf:type schema:Organization
    345 grid-institutes:grid.263761.7 schema:alternateName Department of Biostatistics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, China
    346 schema:name Department of Biostatistics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, China
    347 rdf:type schema:Organization
    348 grid-institutes:grid.265892.2 schema:alternateName Department of Biostatistics, University of Alabama at Birmingham, 35294-0022, Birmingham, AL, USA
    349 schema:name Department of Biostatistics, University of Alabama at Birmingham, 35294-0022, Birmingham, AL, USA
    350 rdf:type schema:Organization
    351 grid-institutes:grid.66859.34 schema:alternateName Program in Medical and Population Genetics, the Broad Institute, 02142, Cambridge, MA, USA
    352 schema:name Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
    353 Program in Medical and Population Genetics, the Broad Institute, 02142, Cambridge, MA, USA
    354 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...