Inactivity periods and postural change speed can explain atypical postural change patterns of Caenorhabditis elegans mutants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Tsukasa Fukunaga, Wataru Iwasaki

ABSTRACT

BACKGROUND: With rapid advances in genome sequencing and editing technologies, systematic and quantitative analysis of animal behavior is expected to be another key to facilitating data-driven behavioral genetics. The nematode Caenorhabditis elegans is a model organism in this field. Several video-tracking systems are available for automatically recording behavioral data for the nematode, but computational methods for analyzing these data are still under development. RESULTS: In this study, we applied the Gaussian mixture model-based binning method to time-series postural data for 322 C. elegans strains. We revealed that the occurrence patterns of the postural states and the transition patterns among these states have a relationship as expected, and such a relationship must be taken into account to identify strains with atypical behaviors that are different from those of wild type. Based on this observation, we identified several strains that exhibit atypical transition patterns that cannot be fully explained by their occurrence patterns of postural states. Surprisingly, we found that two simple factors-overall acceleration of postural movement and elimination of inactivity periods-explained the behavioral characteristics of strains with very atypical transition patterns; therefore, computational analysis of animal behavior must be accompanied by evaluation of the effects of these simple factors. Finally, we found that the npr-1 and npr-3 mutants have similar behavioral patterns that were not predictable by sequence homology, proving that our data-driven approach can reveal the functions of genes that have not yet been characterized. CONCLUSION: We propose that elimination of inactivity periods and overall acceleration of postural change speed can explain behavioral phenotypes of strains with very atypical postural transition patterns. Our methods and results constitute guidelines for effectively finding strains that show "truly" interesting behaviors and systematically uncovering novel gene functions by bioimage-informatic approaches. More... »

PAGES

46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-016-1408-8

DOI

http://dx.doi.org/10.1186/s12859-016-1408-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051134238

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28103804


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Behavior, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caenorhabditis elegans Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Neuropeptide Y", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Japan Society for the Promotion of Science", 
          "id": "https://www.grid.ac/institutes/grid.54432.34", 
          "name": [
            "Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, 277-8568, Chiba, Japan", 
            "Faculty of Science and Engineering, Waseda University, 169-0072, Tokyo, Japan", 
            "Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukunaga", 
        "givenName": "Tsukasa", 
        "id": "sg:person.0640113135.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640113135.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, 277-8568, Chiba, Japan", 
            "Atmosphere and Ocean Research Institute, The University of Tokyo, 277-8564, Chiba, Japan", 
            "Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0032, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwasaki", 
        "givenName": "Wataru", 
        "id": "sg:person.015752426160.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752426160.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000401252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1211447110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001507209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0002208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002735252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003959977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003959977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1310468110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007925982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007943833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008283990", 
          "https://doi.org/10.1038/nrg2897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008283990", 
          "https://doi.org/10.1038/nrg2897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2013.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008630482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009179681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009582947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1986.0056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012123360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0509436102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012828432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(02)00117-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013382009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m304056200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013593260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014382873", 
          "https://doi.org/10.1038/nmeth.2994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015553927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018872774", 
          "https://doi.org/10.1038/nmeth.2560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018992689", 
          "https://doi.org/10.1038/nmeth.1625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019563237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2015.0899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021001405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2014.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022152917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2006.11.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022835083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023792803", 
          "https://doi.org/10.1038/nmeth.2532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024777950", 
          "https://doi.org/10.1038/nature01170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-6-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032972815", 
          "https://doi.org/10.1186/1471-2156-6-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2014.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033278117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033716801", 
          "https://doi.org/10.1038/nmeth.1310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81609-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035049723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035051600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035051600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035051600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035051600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035051600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0128668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037714980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.13.14.1780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038566121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042592020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044845245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0059865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052118035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(00)80123-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052601035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.00782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053262387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.61115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1982.1056489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061648677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5396.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.22-06-02274.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075015014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079928231", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: With rapid advances in genome sequencing and editing technologies, systematic and quantitative analysis of animal behavior is expected to be another key to facilitating data-driven behavioral genetics. The nematode Caenorhabditis elegans is a model organism in this field. Several video-tracking systems are available for automatically recording behavioral data for the nematode, but computational methods for analyzing these data are still under development.\nRESULTS: In this study, we applied the Gaussian mixture model-based binning method to time-series postural data for 322 C. elegans strains. We revealed that the occurrence patterns of the postural states and the transition patterns among these states have a relationship as expected, and such a relationship must be taken into account to identify strains with atypical behaviors that are different from those of wild type. Based on this observation, we identified several strains that exhibit atypical transition patterns that cannot be fully explained by their occurrence patterns of postural states. Surprisingly, we found that two simple factors-overall acceleration of postural movement and elimination of inactivity periods-explained the behavioral characteristics of strains with very atypical transition patterns; therefore, computational analysis of animal behavior must be accompanied by evaluation of the effects of these simple factors. Finally, we found that the npr-1 and npr-3 mutants have similar behavioral patterns that were not predictable by sequence homology, proving that our data-driven approach can reveal the functions of genes that have not yet been characterized.\nCONCLUSION: We propose that elimination of inactivity periods and overall acceleration of postural change speed can explain behavioral phenotypes of strains with very atypical postural transition patterns. Our methods and results constitute guidelines for effectively finding strains that show \"truly\" interesting behaviors and systematically uncovering novel gene functions by bioimage-informatic approaches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-016-1408-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5907746", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5865461", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6534336", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Inactivity periods and postural change speed can explain atypical postural change patterns of Caenorhabditis elegans mutants", 
    "pagination": "46", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f395a9d3c95797512b0f229fa08b9767c3433cb524222683c16b28ad47c97566"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28103804"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-016-1408-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051134238"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-016-1408-8", 
      "https://app.dimensions.ai/details/publication/pub.1051134238"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54331_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-016-1408-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1408-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1408-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1408-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1408-8'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      78 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-016-1408-8 schema:about N6206b3dde6bd4383acd64b068c079d17
2 N7a0af35f22974fba83de2f6596f47bd3
3 N82ff89fb416c4598a96e6472c8977b2c
4 N8aeab671a4494b0eb2eb524404ece97f
5 N9a4613e3cbaa4efd9c409a2d9f40c5d2
6 N9c9150e5ee7c40eab811cd15442c7ad2
7 Nbf23443816834ed1b6956eecfcf83108
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N45fc91acf126493f9564313a92d0e382
11 schema:citation sg:pub.10.1038/nature01170
12 sg:pub.10.1038/nmeth.1310
13 sg:pub.10.1038/nmeth.1625
14 sg:pub.10.1038/nmeth.2532
15 sg:pub.10.1038/nmeth.2560
16 sg:pub.10.1038/nmeth.2994
17 sg:pub.10.1038/nrg2897
18 sg:pub.10.1186/1471-2156-6-5
19 https://app.dimensions.ai/details/publication/pub.1079928231
20 https://doi.org/10.1016/j.compbiolchem.2015.02.006
21 https://doi.org/10.1016/j.cub.2005.04.017
22 https://doi.org/10.1016/j.cub.2006.11.065
23 https://doi.org/10.1016/j.jneumeth.2006.06.007
24 https://doi.org/10.1016/j.neuron.2013.04.002
25 https://doi.org/10.1016/j.neuron.2014.09.005
26 https://doi.org/10.1016/j.tree.2014.05.004
27 https://doi.org/10.1016/s0092-8674(00)81609-8
28 https://doi.org/10.1016/s0165-0270(02)00117-6
29 https://doi.org/10.1016/s0896-6273(00)80123-3
30 https://doi.org/10.1073/pnas.0509436102
31 https://doi.org/10.1073/pnas.1211447110
32 https://doi.org/10.1073/pnas.1310468110
33 https://doi.org/10.1074/jbc.m304056200
34 https://doi.org/10.1093/nar/gkt1063
35 https://doi.org/10.1098/rsif.2015.0899
36 https://doi.org/10.1098/rstb.1986.0056
37 https://doi.org/10.1101/gad.13.14.1780
38 https://doi.org/10.1109/18.61115
39 https://doi.org/10.1109/tit.1982.1056489
40 https://doi.org/10.1126/science.282.5396.2012
41 https://doi.org/10.1371/journal.pcbi.1000028
42 https://doi.org/10.1371/journal.pcbi.1004322
43 https://doi.org/10.1371/journal.pcbi.1004517
44 https://doi.org/10.1371/journal.pgen.0020057
45 https://doi.org/10.1371/journal.pgen.1000419
46 https://doi.org/10.1371/journal.pone.0002208
47 https://doi.org/10.1371/journal.pone.0013914
48 https://doi.org/10.1371/journal.pone.0013922
49 https://doi.org/10.1371/journal.pone.0059865
50 https://doi.org/10.1371/journal.pone.0128668
51 https://doi.org/10.1523/jneurosci.22-06-02274.2002
52 https://doi.org/10.7554/elife.00782
53 schema:datePublished 2017-12
54 schema:datePublishedReg 2017-12-01
55 schema:description BACKGROUND: With rapid advances in genome sequencing and editing technologies, systematic and quantitative analysis of animal behavior is expected to be another key to facilitating data-driven behavioral genetics. The nematode Caenorhabditis elegans is a model organism in this field. Several video-tracking systems are available for automatically recording behavioral data for the nematode, but computational methods for analyzing these data are still under development. RESULTS: In this study, we applied the Gaussian mixture model-based binning method to time-series postural data for 322 C. elegans strains. We revealed that the occurrence patterns of the postural states and the transition patterns among these states have a relationship as expected, and such a relationship must be taken into account to identify strains with atypical behaviors that are different from those of wild type. Based on this observation, we identified several strains that exhibit atypical transition patterns that cannot be fully explained by their occurrence patterns of postural states. Surprisingly, we found that two simple factors-overall acceleration of postural movement and elimination of inactivity periods-explained the behavioral characteristics of strains with very atypical transition patterns; therefore, computational analysis of animal behavior must be accompanied by evaluation of the effects of these simple factors. Finally, we found that the npr-1 and npr-3 mutants have similar behavioral patterns that were not predictable by sequence homology, proving that our data-driven approach can reveal the functions of genes that have not yet been characterized. CONCLUSION: We propose that elimination of inactivity periods and overall acceleration of postural change speed can explain behavioral phenotypes of strains with very atypical postural transition patterns. Our methods and results constitute guidelines for effectively finding strains that show "truly" interesting behaviors and systematically uncovering novel gene functions by bioimage-informatic approaches.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N1005595c00a342f1a39e199e30e295e9
60 N4e5aae99785b424e87e6a66a455b7ec3
61 sg:journal.1023786
62 schema:name Inactivity periods and postural change speed can explain atypical postural change patterns of Caenorhabditis elegans mutants
63 schema:pagination 46
64 schema:productId N558236725b7c4b16a68e3844fc3e8d14
65 Na7501c71239b4e47a87315d249b7ca14
66 Na8e6c254ccc84007b2d9df63e1970b0d
67 Ndbad0bb37a814c259b6d94d52dacf8cd
68 Ne064d9cbbcbb4f139581f78bcf2d0688
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134238
70 https://doi.org/10.1186/s12859-016-1408-8
71 schema:sdDatePublished 2019-04-11T10:20
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N37b4be67ab68469a8481cf69ed2b672d
74 schema:url https://link.springer.com/10.1186%2Fs12859-016-1408-8
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N1005595c00a342f1a39e199e30e295e9 schema:volumeNumber 18
79 rdf:type schema:PublicationVolume
80 N37b4be67ab68469a8481cf69ed2b672d schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N45fc91acf126493f9564313a92d0e382 rdf:first sg:person.0640113135.82
83 rdf:rest N602e2c42424842c181f4f462057f43f6
84 N4e5aae99785b424e87e6a66a455b7ec3 schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N558236725b7c4b16a68e3844fc3e8d14 schema:name readcube_id
87 schema:value f395a9d3c95797512b0f229fa08b9767c3433cb524222683c16b28ad47c97566
88 rdf:type schema:PropertyValue
89 N602e2c42424842c181f4f462057f43f6 rdf:first sg:person.015752426160.38
90 rdf:rest rdf:nil
91 N6206b3dde6bd4383acd64b068c079d17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Caenorhabditis elegans
93 rdf:type schema:DefinedTerm
94 N7a0af35f22974fba83de2f6596f47bd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Behavior, Animal
96 rdf:type schema:DefinedTerm
97 N82ff89fb416c4598a96e6472c8977b2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Mutation
99 rdf:type schema:DefinedTerm
100 N8aeab671a4494b0eb2eb524404ece97f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Models, Theoretical
102 rdf:type schema:DefinedTerm
103 N9a4613e3cbaa4efd9c409a2d9f40c5d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Receptors, Neuropeptide Y
105 rdf:type schema:DefinedTerm
106 N9c9150e5ee7c40eab811cd15442c7ad2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Caenorhabditis elegans Proteins
108 rdf:type schema:DefinedTerm
109 Na7501c71239b4e47a87315d249b7ca14 schema:name pubmed_id
110 schema:value 28103804
111 rdf:type schema:PropertyValue
112 Na8e6c254ccc84007b2d9df63e1970b0d schema:name doi
113 schema:value 10.1186/s12859-016-1408-8
114 rdf:type schema:PropertyValue
115 Nbf23443816834ed1b6956eecfcf83108 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Animals
117 rdf:type schema:DefinedTerm
118 Ndbad0bb37a814c259b6d94d52dacf8cd schema:name nlm_unique_id
119 schema:value 100965194
120 rdf:type schema:PropertyValue
121 Ne064d9cbbcbb4f139581f78bcf2d0688 schema:name dimensions_id
122 schema:value pub.1051134238
123 rdf:type schema:PropertyValue
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
128 schema:name Genetics
129 rdf:type schema:DefinedTerm
130 sg:grant.5865461 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1408-8
131 rdf:type schema:MonetaryGrant
132 sg:grant.5907746 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1408-8
133 rdf:type schema:MonetaryGrant
134 sg:grant.6534336 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1408-8
135 rdf:type schema:MonetaryGrant
136 sg:journal.1023786 schema:issn 1471-2105
137 schema:name BMC Bioinformatics
138 rdf:type schema:Periodical
139 sg:person.015752426160.38 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
140 schema:familyName Iwasaki
141 schema:givenName Wataru
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752426160.38
143 rdf:type schema:Person
144 sg:person.0640113135.82 schema:affiliation https://www.grid.ac/institutes/grid.54432.34
145 schema:familyName Fukunaga
146 schema:givenName Tsukasa
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640113135.82
148 rdf:type schema:Person
149 sg:pub.10.1038/nature01170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024777950
150 https://doi.org/10.1038/nature01170
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nmeth.1310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033716801
153 https://doi.org/10.1038/nmeth.1310
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nmeth.1625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018992689
156 https://doi.org/10.1038/nmeth.1625
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmeth.2532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023792803
159 https://doi.org/10.1038/nmeth.2532
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmeth.2560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018872774
162 https://doi.org/10.1038/nmeth.2560
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmeth.2994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014382873
165 https://doi.org/10.1038/nmeth.2994
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nrg2897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008283990
168 https://doi.org/10.1038/nrg2897
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1471-2156-6-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032972815
171 https://doi.org/10.1186/1471-2156-6-5
172 rdf:type schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1079928231 schema:CreativeWork
174 https://doi.org/10.1016/j.compbiolchem.2015.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035051600
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.cub.2005.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003959977
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.cub.2006.11.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022245162
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jneumeth.2006.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022835083
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.neuron.2013.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008630482
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.neuron.2014.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033278117
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.tree.2014.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022152917
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0092-8674(00)81609-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035049723
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0165-0270(02)00117-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013382009
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0896-6273(00)80123-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052601035
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.0509436102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012828432
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.1211447110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001507209
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.1310468110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007925982
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1074/jbc.m304056200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013593260
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/nar/gkt1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009179681
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1098/rsif.2015.0899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021001405
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1098/rstb.1986.0056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012123360
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1101/gad.13.14.1780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038566121
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/18.61115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100441
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/tit.1982.1056489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061648677
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.282.5396.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563514
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pcbi.1000028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042592020
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pcbi.1004322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044845245
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1371/journal.pcbi.1004517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007943833
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pgen.0020057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000401252
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pgen.1000419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015553927
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1371/journal.pone.0002208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735252
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pone.0013914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009582947
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1371/journal.pone.0013922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019563237
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1371/journal.pone.0059865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052118035
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1371/journal.pone.0128668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037714980
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1523/jneurosci.22-06-02274.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075015014
237 rdf:type schema:CreativeWork
238 https://doi.org/10.7554/elife.00782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053262387
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
241 schema:name Atmosphere and Ocean Research Institute, The University of Tokyo, 277-8564, Chiba, Japan
242 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0032, Tokyo, Japan
243 Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, 277-8568, Chiba, Japan
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.54432.34 schema:alternateName Japan Society for the Promotion of Science
246 schema:name Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, 277-8568, Chiba, Japan
247 Faculty of Science and Engineering, Waseda University, 169-0072, Tokyo, Japan
248 Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...