Integration of metabolomics, lipidomics and clinical data using a machine learning method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11

AUTHORS

Animesh Acharjee, Zsuzsanna Ament, James A. West, Elizabeth Stanley, Julian L. Griffin

ABSTRACT

BACKGROUND: The recent pandemic of obesity and the metabolic syndrome (MetS) has led to the realisation that new drug targets are needed to either reduce obesity or the subsequent pathophysiological consequences associated with excess weight gain. Certain nuclear hormone receptors (NRs) play a pivotal role in lipid and carbohydrate metabolism and have been highlighted as potential treatments for obesity. This realisation started a search for NR agonists in order to understand and successfully treat MetS and associated conditions such as insulin resistance, dyslipidaemia, hypertension, hypertriglyceridemia, obesity and cardiovascular disease. The most studied NRs for treating metabolic diseases are the peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-γ, and PPAR-δ. However, prolonged PPAR treatment in animal models has led to adverse side effects including increased risk of a number of cancers, but how these receptors change metabolism long term in terms of pathology, despite many beneficial effects shorter term, is not fully understood. In the current study, changes in male Sprague Dawley rat liver caused by dietary treatment with a PPAR-pan (PPAR-α, -γ, and -δ) agonist were profiled by classical toxicology (clinical chemistry) and high throughput metabolomics and lipidomics approaches using mass spectrometry. RESULTS: In order to integrate an extensive set of nine different multivariate metabolic and lipidomics datasets with classical toxicological parameters we developed a hypotheses free, data driven machine learning approach. From the data analysis, we examined how the nine datasets were able to model dose and clinical chemistry results, with the different datasets having very different information content. CONCLUSIONS: We found lipidomics (Direct Infusion-Mass Spectrometry) data the most predictive for different dose responses. In addition, associations with the metabolic and lipidomic data with aspartate amino transaminase (AST), a hepatic leakage enzyme to assess organ damage, and albumin, indicative of altered liver synthetic function, were established. Furthermore, by establishing correlations and network connections between eicosanoids, phospholipids and triacylglycerols, we provide evidence that these lipids function as a key link between inflammatory processes and intermediary metabolism. More... »

PAGES

440

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-016-1292-2

DOI

http://dx.doi.org/10.1186/s12859-016-1292-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027171118

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28185575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Chemical Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipid Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "PPAR alpha", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "PPAR gamma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats, Sprague-Dawley", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Medical Research Council, Elsie Widdowson Laboratory, 120 Fulbourn Road, CB1 9NL, Cambridge, UK", 
            "The Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acharjee", 
        "givenName": "Animesh", 
        "id": "sg:person.01201366413.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201366413.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Human Nutrition Research", 
          "id": "https://www.grid.ac/institutes/grid.415055.0", 
          "name": [
            "Medical Research Council, Elsie Widdowson Laboratory, 120 Fulbourn Road, CB1 9NL, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ament", 
        "givenName": "Zsuzsanna", 
        "id": "sg:person.0765034340.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765034340.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Human Nutrition Research", 
          "id": "https://www.grid.ac/institutes/grid.415055.0", 
          "name": [
            "Medical Research Council, Elsie Widdowson Laboratory, 120 Fulbourn Road, CB1 9NL, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "West", 
        "givenName": "James A.", 
        "id": "sg:person.01165153270.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165153270.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Human Nutrition Research", 
          "id": "https://www.grid.ac/institutes/grid.415055.0", 
          "name": [
            "Medical Research Council, Elsie Widdowson Laboratory, 120 Fulbourn Road, CB1 9NL, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanley", 
        "givenName": "Elizabeth", 
        "id": "sg:person.01343525277.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343525277.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Medical Research Council, Elsie Widdowson Laboratory, 120 Fulbourn Road, CB1 9NL, Cambridge, UK", 
            "The Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griffin", 
        "givenName": "Julian L.", 
        "id": "sg:person.012451221647.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012451221647.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.gene.2014.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002076029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0076894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002551822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0076894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002551822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0076894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002551822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156594", 
          "https://doi.org/10.1186/1471-2105-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156594", 
          "https://doi.org/10.1186/1471-2105-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gm331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005316783", 
          "https://doi.org/10.1186/gm331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2015.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005650536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005856744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi701584v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007395903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi701584v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007395903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabres.2014.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018022651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2011.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018135175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-800280-3.00012-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019750930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-9861(69)90540-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021147755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2014.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022904282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2014.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022904282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1203/00006450-199109000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024554377", 
          "https://doi.org/10.1203/00006450-199109000-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-014-1710-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030138709", 
          "https://doi.org/10.1007/s00018-014-1710-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2015.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034026775", 
          "https://doi.org/10.1038/ijo.2015.65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0107801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035356170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0107801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035356170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-015-1982-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037150384", 
          "https://doi.org/10.1007/s00018-015-1982-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-015-1982-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037150384", 
          "https://doi.org/10.1007/s00018-015-1982-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039819082", 
          "https://doi.org/10.1186/1471-2164-11-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0027-5107(01)00292-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042616920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejphar.2015.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044669392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/molecules20022425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045605479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/molecules20022425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045605479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/943162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048920442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db09-0016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052107512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2013.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053429510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2015.04.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053584790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr4007766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056293626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218213015400230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062965000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5351/csam.2015.22.6.665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072781003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075520303", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/9781780642000.0141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089227901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "BACKGROUND: The recent pandemic of obesity and the metabolic syndrome (MetS) has led to the realisation that new drug targets are needed to either reduce obesity or the subsequent pathophysiological consequences associated with excess weight gain. Certain nuclear hormone receptors (NRs) play a pivotal role in lipid and carbohydrate metabolism and have been highlighted as potential treatments for obesity. This realisation started a search for NR agonists in order to understand and successfully treat MetS and associated conditions such as insulin resistance, dyslipidaemia, hypertension, hypertriglyceridemia, obesity and cardiovascular disease. The most studied NRs for treating metabolic diseases are the peroxisome proliferator-activated receptors (PPARs), PPAR-\u03b1, PPAR-\u03b3, and PPAR-\u03b4. However, prolonged PPAR treatment in animal models has led to adverse side effects including increased risk of a number of cancers, but how these receptors change metabolism long term in terms of pathology, despite many beneficial effects shorter term, is not fully understood. In the current study, changes in male Sprague Dawley rat liver caused by dietary treatment with a PPAR-pan (PPAR-\u03b1, -\u03b3, and -\u03b4) agonist were profiled by classical toxicology (clinical chemistry) and high throughput metabolomics and lipidomics approaches using mass spectrometry.\nRESULTS: In order to integrate an extensive set of nine different multivariate metabolic and lipidomics datasets with classical toxicological parameters we developed a hypotheses free, data driven machine learning approach. From the data analysis, we examined how the nine datasets were able to model dose and clinical chemistry results, with the different datasets having very different information content.\nCONCLUSIONS: We found lipidomics (Direct Infusion-Mass Spectrometry) data the most predictive for different dose responses. In addition, associations with the metabolic and lipidomic data with aspartate amino transaminase (AST), a hepatic leakage enzyme to assess organ damage, and albumin, indicative of altered liver synthetic function, were established. Furthermore, by establishing correlations and network connections between eicosanoids, phospholipids and triacylglycerols, we provide evidence that these lipids function as a key link between inflammatory processes and intermediary metabolism.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-016-1292-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3864009", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3779907", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6542332", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6446046", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3864363", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2785012", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 15", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Integration of metabolomics, lipidomics and clinical data using a machine learning method", 
    "pagination": "440", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "816eb21f408ccb4604afab736fa9f2d135372daaaffff8f7cf461086aa98be5d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28185575"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-016-1292-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027171118"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-016-1292-2", 
      "https://app.dimensions.ai/details/publication/pub.1027171118"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-016-1292-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1292-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1292-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1292-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1292-2'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      75 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-016-1292-2 schema:about N052fe0f0b62a4725a7b23201bbb3f8f6
2 N13b5d2340e6b456e8f54c070b8d00764
3 N1ef030f87b8249728bdb34f6d2def3ae
4 N1f5e0fe2809f42a9afafadde47d9eaf6
5 N50f0416dfd1b4a978008c99484801d41
6 N586c1f0037b0455486cfc3343bc4d6ee
7 N61f7469d250b4af1a7be8b42db56b562
8 N6cc77dbb1f494ec9b35acc1d9859431e
9 N86e73836cc3f40618d930a418ad4b76a
10 Nc53646f0a22041e48a37e58925457316
11 Nccdfcef988894786b3c27677257b031d
12 Nd5f5a4aa3380483a95c1f7edffcf6c03
13 Ndc0d487e5752493b97051c4c7081da75
14 Ndc545e5cbfcd45a296c6ce74beb760c7
15 Nfb16fabc5cec415c8d24376e4cca21fb
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author N53c2b8d0409444f99aee0ca809e3c487
19 schema:citation sg:pub.10.1007/s00018-014-1710-4
20 sg:pub.10.1007/s00018-015-1982-3
21 sg:pub.10.1023/a:1010933404324
22 sg:pub.10.1038/ijo.2015.65
23 sg:pub.10.1186/1471-2105-7-3
24 sg:pub.10.1186/1471-2164-11-9
25 sg:pub.10.1186/gm331
26 sg:pub.10.1203/00006450-199109000-00002
27 https://app.dimensions.ai/details/publication/pub.1075520303
28 https://doi.org/10.1016/0003-9861(69)90540-2
29 https://doi.org/10.1016/b978-0-12-800280-3.00012-8
30 https://doi.org/10.1016/j.aca.2011.03.050
31 https://doi.org/10.1016/j.aca.2013.09.027
32 https://doi.org/10.1016/j.diabres.2014.04.006
33 https://doi.org/10.1016/j.ejphar.2015.07.020
34 https://doi.org/10.1016/j.freeradbiomed.2015.11.033
35 https://doi.org/10.1016/j.gene.2014.10.039
36 https://doi.org/10.1016/j.jconrel.2015.04.033
37 https://doi.org/10.1016/j.ymeth.2014.06.010
38 https://doi.org/10.1016/s0027-5107(01)00292-5
39 https://doi.org/10.1021/bi701584v
40 https://doi.org/10.1021/pr4007766
41 https://doi.org/10.1079/9781780642000.0141
42 https://doi.org/10.1142/s0218213015400230
43 https://doi.org/10.1155/2014/943162
44 https://doi.org/10.1371/journal.pone.0076894
45 https://doi.org/10.1371/journal.pone.0096056
46 https://doi.org/10.1371/journal.pone.0107801
47 https://doi.org/10.2337/db09-0016
48 https://doi.org/10.3390/molecules20022425
49 https://doi.org/10.5351/csam.2015.22.6.665
50 schema:datePublished 2016-11
51 schema:datePublishedReg 2016-11-01
52 schema:description BACKGROUND: The recent pandemic of obesity and the metabolic syndrome (MetS) has led to the realisation that new drug targets are needed to either reduce obesity or the subsequent pathophysiological consequences associated with excess weight gain. Certain nuclear hormone receptors (NRs) play a pivotal role in lipid and carbohydrate metabolism and have been highlighted as potential treatments for obesity. This realisation started a search for NR agonists in order to understand and successfully treat MetS and associated conditions such as insulin resistance, dyslipidaemia, hypertension, hypertriglyceridemia, obesity and cardiovascular disease. The most studied NRs for treating metabolic diseases are the peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-γ, and PPAR-δ. However, prolonged PPAR treatment in animal models has led to adverse side effects including increased risk of a number of cancers, but how these receptors change metabolism long term in terms of pathology, despite many beneficial effects shorter term, is not fully understood. In the current study, changes in male Sprague Dawley rat liver caused by dietary treatment with a PPAR-pan (PPAR-α, -γ, and -δ) agonist were profiled by classical toxicology (clinical chemistry) and high throughput metabolomics and lipidomics approaches using mass spectrometry. RESULTS: In order to integrate an extensive set of nine different multivariate metabolic and lipidomics datasets with classical toxicological parameters we developed a hypotheses free, data driven machine learning approach. From the data analysis, we examined how the nine datasets were able to model dose and clinical chemistry results, with the different datasets having very different information content. CONCLUSIONS: We found lipidomics (Direct Infusion-Mass Spectrometry) data the most predictive for different dose responses. In addition, associations with the metabolic and lipidomic data with aspartate amino transaminase (AST), a hepatic leakage enzyme to assess organ damage, and albumin, indicative of altered liver synthetic function, were established. Furthermore, by establishing correlations and network connections between eicosanoids, phospholipids and triacylglycerols, we provide evidence that these lipids function as a key link between inflammatory processes and intermediary metabolism.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N0322caa01c544068b58c6461350e1ab7
57 N9e17fc0a64154c8e8c7c406747560d67
58 sg:journal.1023786
59 schema:name Integration of metabolomics, lipidomics and clinical data using a machine learning method
60 schema:pagination 440
61 schema:productId N393e459f0c75479fae7f1d25513fa71e
62 N420eab1b8f45449bacafb1f4161a83d9
63 N7ca9ea5900dc435184a6c738ae86d2a4
64 N9e76a20ce0f64b28abd90c39a7462bec
65 Nbfe4aab496ef4a66a14fc4dc60c6fafb
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027171118
67 https://doi.org/10.1186/s12859-016-1292-2
68 schema:sdDatePublished 2019-04-11T12:40
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nd928441a429f4454b27df56193cd3932
71 schema:url https://link.springer.com/10.1186%2Fs12859-016-1292-2
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0322caa01c544068b58c6461350e1ab7 schema:issueNumber Suppl 15
76 rdf:type schema:PublicationIssue
77 N052fe0f0b62a4725a7b23201bbb3f8f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name PPAR gamma
79 rdf:type schema:DefinedTerm
80 N0c04e575919e42b4b67b6128c1338b90 rdf:first sg:person.01343525277.96
81 rdf:rest Na77f62a93e914ecf866cbe87de53f96d
82 N13b5d2340e6b456e8f54c070b8d00764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Animals
84 rdf:type schema:DefinedTerm
85 N1ef030f87b8249728bdb34f6d2def3ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Blood Chemical Analysis
87 rdf:type schema:DefinedTerm
88 N1f5e0fe2809f42a9afafadde47d9eaf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Metabolic Syndrome
90 rdf:type schema:DefinedTerm
91 N22b771a5389a46ea98282f03c5ac8270 rdf:first sg:person.0765034340.18
92 rdf:rest N777e420528d54ad49c35eb5c313a06c0
93 N393e459f0c75479fae7f1d25513fa71e schema:name readcube_id
94 schema:value 816eb21f408ccb4604afab736fa9f2d135372daaaffff8f7cf461086aa98be5d
95 rdf:type schema:PropertyValue
96 N420eab1b8f45449bacafb1f4161a83d9 schema:name doi
97 schema:value 10.1186/s12859-016-1292-2
98 rdf:type schema:PropertyValue
99 N50f0416dfd1b4a978008c99484801d41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Lipid Metabolism
101 rdf:type schema:DefinedTerm
102 N53c2b8d0409444f99aee0ca809e3c487 rdf:first sg:person.01201366413.30
103 rdf:rest N22b771a5389a46ea98282f03c5ac8270
104 N586c1f0037b0455486cfc3343bc4d6ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Obesity
106 rdf:type schema:DefinedTerm
107 N61f7469d250b4af1a7be8b42db56b562 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Databases, Factual
109 rdf:type schema:DefinedTerm
110 N6cc77dbb1f494ec9b35acc1d9859431e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Machine Learning
112 rdf:type schema:DefinedTerm
113 N777e420528d54ad49c35eb5c313a06c0 rdf:first sg:person.01165153270.99
114 rdf:rest N0c04e575919e42b4b67b6128c1338b90
115 N7ca9ea5900dc435184a6c738ae86d2a4 schema:name pubmed_id
116 schema:value 28185575
117 rdf:type schema:PropertyValue
118 N86e73836cc3f40618d930a418ad4b76a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name PPAR alpha
120 rdf:type schema:DefinedTerm
121 N9e17fc0a64154c8e8c7c406747560d67 schema:volumeNumber 17
122 rdf:type schema:PublicationVolume
123 N9e76a20ce0f64b28abd90c39a7462bec schema:name nlm_unique_id
124 schema:value 100965194
125 rdf:type schema:PropertyValue
126 Na77f62a93e914ecf866cbe87de53f96d rdf:first sg:person.012451221647.25
127 rdf:rest rdf:nil
128 Nbfe4aab496ef4a66a14fc4dc60c6fafb schema:name dimensions_id
129 schema:value pub.1027171118
130 rdf:type schema:PropertyValue
131 Nc53646f0a22041e48a37e58925457316 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Humans
133 rdf:type schema:DefinedTerm
134 Nccdfcef988894786b3c27677257b031d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Liver
136 rdf:type schema:DefinedTerm
137 Nd5f5a4aa3380483a95c1f7edffcf6c03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Metabolomics
139 rdf:type schema:DefinedTerm
140 Nd928441a429f4454b27df56193cd3932 schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 Ndc0d487e5752493b97051c4c7081da75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Rats, Sprague-Dawley
144 rdf:type schema:DefinedTerm
145 Ndc545e5cbfcd45a296c6ce74beb760c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Male
147 rdf:type schema:DefinedTerm
148 Nfb16fabc5cec415c8d24376e4cca21fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Rats
150 rdf:type schema:DefinedTerm
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
155 schema:name Clinical Sciences
156 rdf:type schema:DefinedTerm
157 sg:grant.2785012 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1292-2
158 rdf:type schema:MonetaryGrant
159 sg:grant.3779907 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1292-2
160 rdf:type schema:MonetaryGrant
161 sg:grant.3864009 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1292-2
162 rdf:type schema:MonetaryGrant
163 sg:grant.3864363 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1292-2
164 rdf:type schema:MonetaryGrant
165 sg:grant.6446046 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1292-2
166 rdf:type schema:MonetaryGrant
167 sg:grant.6542332 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1292-2
168 rdf:type schema:MonetaryGrant
169 sg:journal.1023786 schema:issn 1471-2105
170 schema:name BMC Bioinformatics
171 rdf:type schema:Periodical
172 sg:person.01165153270.99 schema:affiliation https://www.grid.ac/institutes/grid.415055.0
173 schema:familyName West
174 schema:givenName James A.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165153270.99
176 rdf:type schema:Person
177 sg:person.01201366413.30 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
178 schema:familyName Acharjee
179 schema:givenName Animesh
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201366413.30
181 rdf:type schema:Person
182 sg:person.012451221647.25 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
183 schema:familyName Griffin
184 schema:givenName Julian L.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012451221647.25
186 rdf:type schema:Person
187 sg:person.01343525277.96 schema:affiliation https://www.grid.ac/institutes/grid.415055.0
188 schema:familyName Stanley
189 schema:givenName Elizabeth
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343525277.96
191 rdf:type schema:Person
192 sg:person.0765034340.18 schema:affiliation https://www.grid.ac/institutes/grid.415055.0
193 schema:familyName Ament
194 schema:givenName Zsuzsanna
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765034340.18
196 rdf:type schema:Person
197 sg:pub.10.1007/s00018-014-1710-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030138709
198 https://doi.org/10.1007/s00018-014-1710-4
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s00018-015-1982-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037150384
201 https://doi.org/10.1007/s00018-015-1982-3
202 rdf:type schema:CreativeWork
203 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
204 https://doi.org/10.1023/a:1010933404324
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/ijo.2015.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034026775
207 https://doi.org/10.1038/ijo.2015.65
208 rdf:type schema:CreativeWork
209 sg:pub.10.1186/1471-2105-7-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004156594
210 https://doi.org/10.1186/1471-2105-7-3
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/1471-2164-11-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039819082
213 https://doi.org/10.1186/1471-2164-11-9
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/gm331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005316783
216 https://doi.org/10.1186/gm331
217 rdf:type schema:CreativeWork
218 sg:pub.10.1203/00006450-199109000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024554377
219 https://doi.org/10.1203/00006450-199109000-00002
220 rdf:type schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1075520303 schema:CreativeWork
222 https://doi.org/10.1016/0003-9861(69)90540-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021147755
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/b978-0-12-800280-3.00012-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019750930
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.aca.2011.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018135175
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.aca.2013.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053429510
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.diabres.2014.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018022651
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.ejphar.2015.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044669392
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.freeradbiomed.2015.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005650536
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.gene.2014.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002076029
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.jconrel.2015.04.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053584790
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.ymeth.2014.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904282
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/s0027-5107(01)00292-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042616920
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1021/bi701584v schema:sameAs https://app.dimensions.ai/details/publication/pub.1007395903
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1021/pr4007766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056293626
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1079/9781780642000.0141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089227901
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1142/s0218213015400230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062965000
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1155/2014/943162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048920442
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0076894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002551822
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pone.0096056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005856744
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pone.0107801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035356170
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2337/db09-0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052107512
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3390/molecules20022425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045605479
263 rdf:type schema:CreativeWork
264 https://doi.org/10.5351/csam.2015.22.6.665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072781003
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.415055.0 schema:alternateName MRC Human Nutrition Research
267 schema:name Medical Research Council, Elsie Widdowson Laboratory, 120 Fulbourn Road, CB1 9NL, Cambridge, UK
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
270 schema:name Medical Research Council, Elsie Widdowson Laboratory, 120 Fulbourn Road, CB1 9NL, Cambridge, UK
271 The Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...