Subcellular protein expression models for microsatellite instability in colorectal adenocarcinoma tissue images View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Violeta N. Kovacheva, Nasir M. Rajpoot

ABSTRACT

BACKGROUND: New bioimaging techniques capable of visualising the co-location of numerous proteins within individual cells have been proposed to study tumour heterogeneity of neighbouring cells within the same tissue specimen. These techniques have highlighted the need to better understand the interplay between proteins in terms of their colocalisation. RESULTS: We recently proposed a cellular-level model of the healthy and cancerous colonic crypt microenvironments. Here, we extend the model to include detailed models of protein expression to generate synthetic multiplex fluorescence data. As a first step, we present models for various cell organelles learned from real immunofluorescence data from the Human Protein Atlas. Comparison between the distribution of various features obtained from the real and synthetic organelles has shown very good agreement. This has included both features that have been used as part of the model input and ones that have not been explicitly considered. We then develop models for six proteins which are important colorectal cancer biomarkers and are associated with microsatellite instability, namely MLH1, PMS2, MSH2, MSH6, P53 and PTEN. The protein models include their complex expression patterns and which cell phenotypes express them. The models have been validated by comparing distributions of real and synthesised parameters and by application of frameworks for analysing multiplex immunofluorescence image data. CONCLUSIONS: The six proteins have been chosen as a case study to illustrate how the model can be used to generate synthetic multiplex immunofluorescence data. Further proteins could be included within the model in a similar manner to enable the study of a larger set of proteins of interest and their interactions. To the best of our knowledge, this is the first model for expression of multiple proteins in anatomically intact tissue, rather than within cells in culture. More... »

PAGES

430

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-016-1243-y

DOI

http://dx.doi.org/10.1186/s12859-016-1243-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033492215

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27770786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenocarcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsatellite Instability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsatellite Repeats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Processing, Post-Translational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subcellular Fractions", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Cancer Research", 
          "id": "https://www.grid.ac/institutes/grid.18886.3f", 
          "name": [
            "Department of Systems Biology, University of Warwick, CV4 7AL, Coventry, UK", 
            "Department of Computer Science, University of Warwick, CV4 7AL, Coventry, UK", 
            "Centre for Molecular Pathology, Institute of Cancer Research, SM2 5NG, London, UK", 
            "Centre for Evolution and Cancer, Institute of Cancer Research, SM2 5NG, London, UK", 
            "Division of Molecular Pathology, The Institute of Cancer Research, SM2 5NG, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovacheva", 
        "givenName": "Violeta N.", 
        "id": "sg:person.01266551702.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266551702.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospitals Coventry and Warwickshire NHS Trust", 
          "id": "https://www.grid.ac/institutes/grid.15628.38", 
          "name": [
            "Department of Computer Science, University of Warwick, CV4 7AL, Coventry, UK", 
            "Department of Computer Science and Engineering, Qatar University, Doha, Qatar", 
            "Department of Pathology, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, CV2 2DX, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajpoot", 
        "givenName": "Nasir M.", 
        "id": "sg:person.01076540363.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076540363.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1074/mcp.m700325-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003693273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41184-7_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003907484", 
          "https://doi.org/10.1007/978-3-642-41184-7_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2004.03.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007833592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008932654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008932654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0050514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010563318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5858/arpa.2011-0035-ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012406031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013451519", 
          "https://doi.org/10.1038/nmeth.2096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)64102-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016551802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1205438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017056822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1136800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017347292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021084794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(01)01740-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021447763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021557737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021557737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2010.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023154228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004410000256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023503219", 
          "https://doi.org/10.1007/s004410000256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/371075a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024767107", 
          "https://doi.org/10.1038/371075a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.27.0652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024997039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2009.12.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028352484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nbt.2011.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028670432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.21066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029418320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.2006.02549.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030093906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030201727", 
          "https://doi.org/10.1038/nbt1250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030201727", 
          "https://doi.org/10.1038/nbt1250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2353/jmoldx.2008.070082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031898520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21596-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034005632", 
          "https://doi.org/10.1007/978-3-642-21596-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21596-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034005632", 
          "https://doi.org/10.1007/978-3-642-21596-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0705129104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041142188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045511808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046962118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1126-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047152830", 
          "https://doi.org/10.1186/s12859-016-1126-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-1126-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047152830", 
          "https://doi.org/10.1186/s12859-016-1126-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050813696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050813696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10689-004-7993-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052358588", 
          "https://doi.org/10.1007/s10689-004-7993-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10689-004-7993-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052358588", 
          "https://doi.org/10.1007/s10689-004-7993-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2007.896925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2665076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070692017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/325165.325247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063168177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2009.5193229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078187530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2009.5193141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078187532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2010.5490401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094919678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2015.7163843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095168583"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: New bioimaging techniques capable of visualising the co-location of numerous proteins within individual cells have been proposed to study tumour heterogeneity of neighbouring cells within the same tissue specimen. These techniques have highlighted the need to better understand the interplay between proteins in terms of their colocalisation.\nRESULTS: We recently proposed a cellular-level model of the healthy and cancerous colonic crypt microenvironments. Here, we extend the model to include detailed models of protein expression to generate synthetic multiplex fluorescence data. As a first step, we present models for various cell organelles learned from real immunofluorescence data from the Human Protein Atlas. Comparison between the distribution of various features obtained from the real and synthetic organelles has shown very good agreement. This has included both features that have been used as part of the model input and ones that have not been explicitly considered. We then develop models for six proteins which are important colorectal cancer biomarkers and are associated with microsatellite instability, namely MLH1, PMS2, MSH2, MSH6, P53 and PTEN. The protein models include their complex expression patterns and which cell phenotypes express them. The models have been validated by comparing distributions of real and synthesised parameters and by application of frameworks for analysing multiplex immunofluorescence image data.\nCONCLUSIONS: The six proteins have been chosen as a case study to illustrate how the model can be used to generate synthetic multiplex immunofluorescence data. Further proteins could be included within the model in a similar manner to enable the study of a larger set of proteins of interest and their interactions. To the best of our knowledge, this is the first model for expression of multiple proteins in anatomically intact tissue, rather than within cells in culture.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-016-1243-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4186838", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3499502", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Subcellular protein expression models for microsatellite instability in colorectal adenocarcinoma tissue images", 
    "pagination": "430", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f8c82ea230942359da21f36c93c19d6858a9e070b6888379dda5ad947582fa7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27770786"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-016-1243-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033492215"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-016-1243-y", 
      "https://app.dimensions.ai/details/publication/pub.1033492215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70066_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-016-1243-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1243-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1243-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1243-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1243-y'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      77 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-016-1243-y schema:about N015536324c7e4a7d8edcbfcb339e418f
2 N16b2eac02fcd4c3482500d184230a7ff
3 N34585501d3a942f8abb9a074654b9899
4 N49e9534a77aa4d44a87b2dfc3e843f1e
5 N4c6ad6a049d541149ad39215067d9cad
6 N4dc3efb741e44fd2a1eedbe86135bcc1
7 N6b641df27fc2453b821ffcbae1613d76
8 N91d32ddfb5974c0384a291b5390e2d21
9 Nb8a27cebbaf540b99898dd8f1c4c3941
10 Ne10eb1f8c3344c87a2bb0ec97fcd1367
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author N9a9942f6a54c44749b65d9ffa3b15d9a
14 schema:citation sg:pub.10.1007/978-3-642-21596-4_4
15 sg:pub.10.1007/978-3-642-41184-7_44
16 sg:pub.10.1007/s004410000256
17 sg:pub.10.1007/s10689-004-7993-0
18 sg:pub.10.1038/371075a0
19 sg:pub.10.1038/nbt1250
20 sg:pub.10.1038/nmeth.2096
21 sg:pub.10.1186/s12859-016-1126-2
22 https://doi.org/10.1002/cyto.a.20487
23 https://doi.org/10.1002/cyto.a.20506
24 https://doi.org/10.1002/cyto.a.20714
25 https://doi.org/10.1002/cyto.a.20854
26 https://doi.org/10.1002/cyto.a.21066
27 https://doi.org/10.1016/j.humpath.2010.06.002
28 https://doi.org/10.1016/j.nbt.2011.12.004
29 https://doi.org/10.1016/s0002-9440(10)64102-8
30 https://doi.org/10.1016/s0167-7799(01)01740-1
31 https://doi.org/10.1053/j.gastro.2004.03.068
32 https://doi.org/10.1053/j.gastro.2009.12.065
33 https://doi.org/10.1073/pnas.0705129104
34 https://doi.org/10.1074/mcp.m700325-mcp200
35 https://doi.org/10.1093/bioinformatics/btt676
36 https://doi.org/10.1109/isbi.2009.5193141
37 https://doi.org/10.1109/isbi.2009.5193229
38 https://doi.org/10.1109/isbi.2010.5490401
39 https://doi.org/10.1109/isbi.2015.7163843
40 https://doi.org/10.1109/tmi.2007.896925
41 https://doi.org/10.1111/j.1365-2559.2006.02549.x
42 https://doi.org/10.1126/science.1136800
43 https://doi.org/10.1126/science.1205438
44 https://doi.org/10.1126/science.2665076
45 https://doi.org/10.1137/070692017
46 https://doi.org/10.1145/325165.325247
47 https://doi.org/10.1200/jco.2009.27.0652
48 https://doi.org/10.1371/journal.pcbi.1000705
49 https://doi.org/10.1371/journal.pone.0050514
50 https://doi.org/10.2353/jmoldx.2008.070082
51 https://doi.org/10.5858/arpa.2011-0035-ra
52 schema:datePublished 2016-12
53 schema:datePublishedReg 2016-12-01
54 schema:description BACKGROUND: New bioimaging techniques capable of visualising the co-location of numerous proteins within individual cells have been proposed to study tumour heterogeneity of neighbouring cells within the same tissue specimen. These techniques have highlighted the need to better understand the interplay between proteins in terms of their colocalisation. RESULTS: We recently proposed a cellular-level model of the healthy and cancerous colonic crypt microenvironments. Here, we extend the model to include detailed models of protein expression to generate synthetic multiplex fluorescence data. As a first step, we present models for various cell organelles learned from real immunofluorescence data from the Human Protein Atlas. Comparison between the distribution of various features obtained from the real and synthetic organelles has shown very good agreement. This has included both features that have been used as part of the model input and ones that have not been explicitly considered. We then develop models for six proteins which are important colorectal cancer biomarkers and are associated with microsatellite instability, namely MLH1, PMS2, MSH2, MSH6, P53 and PTEN. The protein models include their complex expression patterns and which cell phenotypes express them. The models have been validated by comparing distributions of real and synthesised parameters and by application of frameworks for analysing multiplex immunofluorescence image data. CONCLUSIONS: The six proteins have been chosen as a case study to illustrate how the model can be used to generate synthetic multiplex immunofluorescence data. Further proteins could be included within the model in a similar manner to enable the study of a larger set of proteins of interest and their interactions. To the best of our knowledge, this is the first model for expression of multiple proteins in anatomically intact tissue, rather than within cells in culture.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N8d5c17502fbe4e25969ff156b5173ffd
59 Nc44b62b39db24a84aa2074b3a7f1607f
60 sg:journal.1023786
61 schema:name Subcellular protein expression models for microsatellite instability in colorectal adenocarcinoma tissue images
62 schema:pagination 430
63 schema:productId N21d4b00b42cb4d52b108b949ead47cde
64 N46faad8fd6e24f24ad7b9ab68b197d65
65 N609ca7274b5f4a97972efb802ef79b1e
66 N6f7fb9b5a36a41e29c07c4678079d8e9
67 Na4f6aba9d6164f7198a3191b5fe12cd4
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033492215
69 https://doi.org/10.1186/s12859-016-1243-y
70 schema:sdDatePublished 2019-04-11T12:44
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N2805d8fd442e451487e645f839832ff0
73 schema:url https://link.springer.com/10.1186%2Fs12859-016-1243-y
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N015536324c7e4a7d8edcbfcb339e418f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Humans
79 rdf:type schema:DefinedTerm
80 N16b2eac02fcd4c3482500d184230a7ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Adenocarcinoma
82 rdf:type schema:DefinedTerm
83 N21d4b00b42cb4d52b108b949ead47cde schema:name dimensions_id
84 schema:value pub.1033492215
85 rdf:type schema:PropertyValue
86 N2805d8fd442e451487e645f839832ff0 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N34585501d3a942f8abb9a074654b9899 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Microsatellite Repeats
90 rdf:type schema:DefinedTerm
91 N46faad8fd6e24f24ad7b9ab68b197d65 schema:name nlm_unique_id
92 schema:value 100965194
93 rdf:type schema:PropertyValue
94 N49e9534a77aa4d44a87b2dfc3e843f1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Subcellular Fractions
96 rdf:type schema:DefinedTerm
97 N4c6ad6a049d541149ad39215067d9cad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Biomarkers, Tumor
99 rdf:type schema:DefinedTerm
100 N4dc3efb741e44fd2a1eedbe86135bcc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Immunohistochemistry
102 rdf:type schema:DefinedTerm
103 N609ca7274b5f4a97972efb802ef79b1e schema:name pubmed_id
104 schema:value 27770786
105 rdf:type schema:PropertyValue
106 N6a19c5bbe32a475daf443465b240b276 rdf:first sg:person.01076540363.55
107 rdf:rest rdf:nil
108 N6b641df27fc2453b821ffcbae1613d76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Protein Processing, Post-Translational
110 rdf:type schema:DefinedTerm
111 N6f7fb9b5a36a41e29c07c4678079d8e9 schema:name doi
112 schema:value 10.1186/s12859-016-1243-y
113 rdf:type schema:PropertyValue
114 N8d5c17502fbe4e25969ff156b5173ffd schema:volumeNumber 17
115 rdf:type schema:PublicationVolume
116 N91d32ddfb5974c0384a291b5390e2d21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name DNA-Binding Proteins
118 rdf:type schema:DefinedTerm
119 N9a9942f6a54c44749b65d9ffa3b15d9a rdf:first sg:person.01266551702.24
120 rdf:rest N6a19c5bbe32a475daf443465b240b276
121 Na4f6aba9d6164f7198a3191b5fe12cd4 schema:name readcube_id
122 schema:value 9f8c82ea230942359da21f36c93c19d6858a9e070b6888379dda5ad947582fa7
123 rdf:type schema:PropertyValue
124 Nb8a27cebbaf540b99898dd8f1c4c3941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Microsatellite Instability
126 rdf:type schema:DefinedTerm
127 Nc44b62b39db24a84aa2074b3a7f1607f schema:issueNumber 1
128 rdf:type schema:PublicationIssue
129 Ne10eb1f8c3344c87a2bb0ec97fcd1367 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Colorectal Neoplasms
131 rdf:type schema:DefinedTerm
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biochemistry and Cell Biology
137 rdf:type schema:DefinedTerm
138 sg:grant.3499502 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1243-y
139 rdf:type schema:MonetaryGrant
140 sg:grant.4186838 http://pending.schema.org/fundedItem sg:pub.10.1186/s12859-016-1243-y
141 rdf:type schema:MonetaryGrant
142 sg:journal.1023786 schema:issn 1471-2105
143 schema:name BMC Bioinformatics
144 rdf:type schema:Periodical
145 sg:person.01076540363.55 schema:affiliation https://www.grid.ac/institutes/grid.15628.38
146 schema:familyName Rajpoot
147 schema:givenName Nasir M.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076540363.55
149 rdf:type schema:Person
150 sg:person.01266551702.24 schema:affiliation https://www.grid.ac/institutes/grid.18886.3f
151 schema:familyName Kovacheva
152 schema:givenName Violeta N.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266551702.24
154 rdf:type schema:Person
155 sg:pub.10.1007/978-3-642-21596-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034005632
156 https://doi.org/10.1007/978-3-642-21596-4_4
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-642-41184-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003907484
159 https://doi.org/10.1007/978-3-642-41184-7_44
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s004410000256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023503219
162 https://doi.org/10.1007/s004410000256
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s10689-004-7993-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052358588
165 https://doi.org/10.1007/s10689-004-7993-0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/371075a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024767107
168 https://doi.org/10.1038/371075a0
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nbt1250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030201727
171 https://doi.org/10.1038/nbt1250
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmeth.2096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013451519
174 https://doi.org/10.1038/nmeth.2096
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/s12859-016-1126-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047152830
177 https://doi.org/10.1186/s12859-016-1126-2
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/cyto.a.20487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045511808
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/cyto.a.20506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021084794
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/cyto.a.20714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021557737
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/cyto.a.20854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008932654
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/cyto.a.21066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029418320
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.humpath.2010.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023154228
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.nbt.2011.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028670432
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0002-9440(10)64102-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016551802
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0167-7799(01)01740-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021447763
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1053/j.gastro.2004.03.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007833592
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1053/j.gastro.2009.12.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028352484
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.0705129104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041142188
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1074/mcp.m700325-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003693273
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/btt676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050813696
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/isbi.2009.5193141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078187532
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/isbi.2009.5193229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078187530
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/isbi.2010.5490401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094919678
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/isbi.2015.7163843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095168583
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/tmi.2007.896925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695023
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.1365-2559.2006.02549.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030093906
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.1136800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347292
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1205438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017056822
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.2665076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549391
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1137/070692017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851215
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1145/325165.325247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063168177
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1200/jco.2009.27.0652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024997039
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pcbi.1000705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046962118
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pone.0050514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010563318
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2353/jmoldx.2008.070082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031898520
236 rdf:type schema:CreativeWork
237 https://doi.org/10.5858/arpa.2011-0035-ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1012406031
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.15628.38 schema:alternateName University Hospitals Coventry and Warwickshire NHS Trust
240 schema:name Department of Computer Science and Engineering, Qatar University, Doha, Qatar
241 Department of Computer Science, University of Warwick, CV4 7AL, Coventry, UK
242 Department of Pathology, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, CV2 2DX, UK
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.18886.3f schema:alternateName Institute of Cancer Research
245 schema:name Centre for Evolution and Cancer, Institute of Cancer Research, SM2 5NG, London, UK
246 Centre for Molecular Pathology, Institute of Cancer Research, SM2 5NG, London, UK
247 Department of Computer Science, University of Warwick, CV4 7AL, Coventry, UK
248 Department of Systems Biology, University of Warwick, CV4 7AL, Coventry, UK
249 Division of Molecular Pathology, The Institute of Cancer Research, SM2 5NG, London, UK
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...