Interpreting transcriptional changes using causal graphs: new methods and their practical utility on public networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Carl Tony Fakhry, Parul Choudhary, Alex Gutteridge, Ben Sidders, Ping Chen, Daniel Ziemek, Kourosh Zarringhalam

ABSTRACT

BACKGROUND: Inference of active regulatory cascades under specific molecular and environmental perturbations is a recurring task in transcriptional data analysis. Commercial tools based on large, manually curated networks of causal relationships offering such functionality have been used in thousands of articles in the biomedical literature. The adoption and extension of such methods in the academic community has been hampered by the lack of freely available, efficient algorithms and an accompanying demonstration of their applicability using current public networks. RESULTS: In this article, we propose a new statistical method that will infer likely upstream regulators based on observed patterns of up- and down-regulated transcripts. The method is suitable for use with public interaction networks with a mix of signed and unsigned causal edges. It subsumes and extends two previously published approaches and we provide a novel algorithmic method for efficient statistical inference. Notably, we demonstrate the feasibility of using the approach to generate biological insights given current public networks in the context of controlled in-vitro overexpression experiments, stem-cell differentiation data and animal disease models. We also provide an efficient implementation of our method in the R package QuaternaryProd available to download from Bioconductor. CONCLUSIONS: In this work, we have closed an important gap in utilizing causal networks to analyze differentially expressed genes. Our proposed Quaternary test statistic incorporates all available evidence on the potential relevance of an upstream regulator. The new approach broadens the use of these types of statistics for highly curated signed networks in which ambiguities arise but also enables the use of networks with unsigned edges. We design and implement a novel computational method that can efficiently estimate p-values for upstream regulators in current biological settings. We demonstrate the ready applicability of the implemented method to analyze differentially expressed genes using the publicly available networks. More... »

PAGES

318

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-016-1181-8

DOI

http://dx.doi.org/10.1186/s12859-016-1181-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013528780

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27553489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Differentiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Boston", 
          "id": "https://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, 02125, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fakhry", 
        "givenName": "Carl Tony", 
        "id": "sg:person.016532011735.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016532011735.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pfizer (United States)", 
          "id": "https://www.grid.ac/institutes/grid.410513.2", 
          "name": [
            "Computational Sciences, Pfizer Worldwide Research & Development, Cambridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choudhary", 
        "givenName": "Parul", 
        "id": "sg:person.011430370375.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011430370375.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pfizer (United States)", 
          "id": "https://www.grid.ac/institutes/grid.410513.2", 
          "name": [
            "Computational Sciences, Pfizer Worldwide Research & Development, Cambridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutteridge", 
        "givenName": "Alex", 
        "id": "sg:person.0575726100.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575726100.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pfizer (United States)", 
          "id": "https://www.grid.ac/institutes/grid.410513.2", 
          "name": [
            "Computational Sciences, Pfizer Worldwide Research & Development, Cambridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sidders", 
        "givenName": "Ben", 
        "id": "sg:person.0730270711.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730270711.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Boston", 
          "id": "https://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Department of Engineering, University of Massachusetts Boston, 100 Morrissey Boulevard02125, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Ping", 
        "id": "sg:person.012217262135.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217262135.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Sciences (United States)", 
          "id": "https://www.grid.ac/institutes/grid.465162.2", 
          "name": [
            "Computational Sciences, Pfizer Worldwide Research & Development, Berlin, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziemek", 
        "givenName": "Daniel", 
        "id": "sg:person.01243442363.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243442363.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Boston", 
          "id": "https://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Department of Mathematics, University of Massachusetts Boston, 100 Morrissey Boulevard, 02125, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zarringhalam", 
        "givenName": "Kourosh", 
        "id": "sg:person.01150056064.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150056064.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1523/jneurosci.3795-08.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001091757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kft232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001317192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymgme.2011.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001619868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005363149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006109556", 
          "https://doi.org/10.1038/nrc2696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbt002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008482872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainresrev.2008.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009046108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m010768200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011313651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014257712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(93)90663-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014401195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0056024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018732085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020379167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pain.2014.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020736722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pain.2014.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020736722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pain.2014.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020736722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1207397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026777246", 
          "https://doi.org/10.1038/sj.onc.1207397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1207397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026777246", 
          "https://doi.org/10.1038/sj.onc.1207397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.3338-07.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031628040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pain.2007.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031724896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pain.2007.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031724896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032318578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bja/aet128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040167316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043851508", 
          "https://doi.org/10.1186/1471-2105-13-35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043851508", 
          "https://doi.org/10.1186/1471-2105-13-35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1048378485", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-3719-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048378485", 
          "https://doi.org/10.1007/978-1-4614-3719-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-3719-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048378485", 
          "https://doi.org/10.1007/978-1-4614-3719-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/bbi.s12167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052244643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/dia.2005.7.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059248740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v040.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1871527311201070844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069221790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083060330", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Inference of active regulatory cascades under specific molecular and environmental perturbations is a recurring task in transcriptional data analysis. Commercial tools based on large, manually curated networks of causal relationships offering such functionality have been used in thousands of articles in the biomedical literature. The adoption and extension of such methods in the academic community has been hampered by the lack of freely available, efficient algorithms and an accompanying demonstration of their applicability using current public networks.\nRESULTS: In this article, we propose a new statistical method that will infer likely upstream regulators based on observed patterns of up- and down-regulated transcripts. The method is suitable for use with public interaction networks with a mix of signed and unsigned causal edges. It subsumes and extends two previously published approaches and we provide a novel algorithmic method for efficient statistical inference. Notably, we demonstrate the feasibility of using the approach to generate biological insights given current public networks in the context of controlled in-vitro overexpression experiments, stem-cell differentiation data and animal disease models. We also provide an efficient implementation of our method in the R package QuaternaryProd available to download from Bioconductor.\nCONCLUSIONS: In this work, we have closed an important gap in utilizing causal networks to analyze differentially expressed genes. Our proposed Quaternary test statistic incorporates all available evidence on the potential relevance of an upstream regulator. The new approach broadens the use of these types of statistics for highly curated signed networks in which ambiguities arise but also enables the use of networks with unsigned edges. We design and implement a novel computational method that can efficiently estimate p-values for upstream regulators in current biological settings. We demonstrate the ready applicability of the implemented method to analyze differentially expressed genes using the publicly available networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-016-1181-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Interpreting transcriptional changes using causal graphs: new methods and their practical utility on public networks", 
    "pagination": "318", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "407290f85589a734f0c152589b7ef95eb495d6535773484c8af2a07b297729d2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27553489"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-016-1181-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013528780"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-016-1181-8", 
      "https://app.dimensions.ai/details/publication/pub.1013528780"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-016-1181-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1181-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1181-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1181-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1181-8'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      65 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-016-1181-8 schema:about N5bc3d999ae49412da7191bba47a5e05d
2 N682582c4dd6d44d3b4159c5ecb63e3fe
3 N951cdaedf5e64e4db3c08c9db77c273e
4 Na8a6a6c0c70b4bd4873dbde8772dcefb
5 Nbdb66e40df794518b6beee08a355a199
6 Nd1d9a6a46dca42cc9028c911bb8efd9b
7 Ne96e73e058024a4fa1ef06c01ceb66cf
8 Nf1a618652e754a1eaf2c5be47bc25121
9 Nf67743c6fb0a453b9369a7d59b81ae3c
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author N904a6d6a22864ad4b1a699ca0674d259
13 schema:citation sg:pub.10.1007/978-1-4614-3719-2
14 sg:pub.10.1038/nature04296
15 sg:pub.10.1038/nrc2696
16 sg:pub.10.1038/sj.onc.1207397
17 sg:pub.10.1186/1471-2105-13-35
18 https://app.dimensions.ai/details/publication/pub.1048378485
19 https://app.dimensions.ai/details/publication/pub.1083060330
20 https://doi.org/10.1016/0092-8674(93)90663-b
21 https://doi.org/10.1016/j.brainresrev.2008.12.020
22 https://doi.org/10.1016/j.pain.2007.08.013
23 https://doi.org/10.1016/j.pain.2014.06.020
24 https://doi.org/10.1016/j.ymgme.2011.09.029
25 https://doi.org/10.1074/jbc.m010768200
26 https://doi.org/10.1089/dia.2005.7.323
27 https://doi.org/10.1093/bib/bbt002
28 https://doi.org/10.1093/bioinformatics/bts090
29 https://doi.org/10.1093/bioinformatics/btt557
30 https://doi.org/10.1093/bioinformatics/btt703
31 https://doi.org/10.1093/bja/aet128
32 https://doi.org/10.1093/nar/gkn760
33 https://doi.org/10.1093/toxsci/kft232
34 https://doi.org/10.1371/journal.pone.0056024
35 https://doi.org/10.1523/jneurosci.3338-07.2008
36 https://doi.org/10.1523/jneurosci.3795-08.2008
37 https://doi.org/10.18637/jss.v040.i08
38 https://doi.org/10.2174/1871527311201070844
39 https://doi.org/10.4137/bbi.s12167
40 schema:datePublished 2016-12
41 schema:datePublishedReg 2016-12-01
42 schema:description BACKGROUND: Inference of active regulatory cascades under specific molecular and environmental perturbations is a recurring task in transcriptional data analysis. Commercial tools based on large, manually curated networks of causal relationships offering such functionality have been used in thousands of articles in the biomedical literature. The adoption and extension of such methods in the academic community has been hampered by the lack of freely available, efficient algorithms and an accompanying demonstration of their applicability using current public networks. RESULTS: In this article, we propose a new statistical method that will infer likely upstream regulators based on observed patterns of up- and down-regulated transcripts. The method is suitable for use with public interaction networks with a mix of signed and unsigned causal edges. It subsumes and extends two previously published approaches and we provide a novel algorithmic method for efficient statistical inference. Notably, we demonstrate the feasibility of using the approach to generate biological insights given current public networks in the context of controlled in-vitro overexpression experiments, stem-cell differentiation data and animal disease models. We also provide an efficient implementation of our method in the R package QuaternaryProd available to download from Bioconductor. CONCLUSIONS: In this work, we have closed an important gap in utilizing causal networks to analyze differentially expressed genes. Our proposed Quaternary test statistic incorporates all available evidence on the potential relevance of an upstream regulator. The new approach broadens the use of these types of statistics for highly curated signed networks in which ambiguities arise but also enables the use of networks with unsigned edges. We design and implement a novel computational method that can efficiently estimate p-values for upstream regulators in current biological settings. We demonstrate the ready applicability of the implemented method to analyze differentially expressed genes using the publicly available networks.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N7d6af3ce9a524d84b00f37703c72f204
47 N8a118178b0cf4467961aac05662f2ec0
48 sg:journal.1023786
49 schema:name Interpreting transcriptional changes using causal graphs: new methods and their practical utility on public networks
50 schema:pagination 318
51 schema:productId N59b2d0e749014f6fb7dff3737a5bfd23
52 Na58442981dee4a6eb3eee497b32d391f
53 Na9122c08665645e2a0ba196e41d3241d
54 Nb8197a0c7f854ef2b9575c0ab13ce1fb
55 Nbee7c0ec5e1445a7869b30d7a91c39cf
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013528780
57 https://doi.org/10.1186/s12859-016-1181-8
58 schema:sdDatePublished 2019-04-11T12:26
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N5085b5c857a340278a5cc75b6c758db1
61 schema:url https://link.springer.com/10.1186%2Fs12859-016-1181-8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0e13eb7c0a2a43888ff48910031ae049 rdf:first sg:person.012217262135.21
66 rdf:rest Nd95347fa22714610b8dd0cc0636307c3
67 N11c0fb350cc1415a930faa4aef1f0477 rdf:first sg:person.011430370375.41
68 rdf:rest Neb8b51fbbdaa4923b4a32cd0a371ce95
69 N3b0f6e34d34a4423837add6c3c6cb28a rdf:first sg:person.0730270711.75
70 rdf:rest N0e13eb7c0a2a43888ff48910031ae049
71 N5085b5c857a340278a5cc75b6c758db1 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N59b2d0e749014f6fb7dff3737a5bfd23 schema:name readcube_id
74 schema:value 407290f85589a734f0c152589b7ef95eb495d6535773484c8af2a07b297729d2
75 rdf:type schema:PropertyValue
76 N5bc3d999ae49412da7191bba47a5e05d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N6774d25f839448d3a2e0d98315b5a39d rdf:first sg:person.01150056064.13
80 rdf:rest rdf:nil
81 N682582c4dd6d44d3b4159c5ecb63e3fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Algorithms
83 rdf:type schema:DefinedTerm
84 N7d6af3ce9a524d84b00f37703c72f204 schema:volumeNumber 17
85 rdf:type schema:PublicationVolume
86 N8a118178b0cf4467961aac05662f2ec0 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N904a6d6a22864ad4b1a699ca0674d259 rdf:first sg:person.016532011735.70
89 rdf:rest N11c0fb350cc1415a930faa4aef1f0477
90 N951cdaedf5e64e4db3c08c9db77c273e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Cell Differentiation
92 rdf:type schema:DefinedTerm
93 Na58442981dee4a6eb3eee497b32d391f schema:name pubmed_id
94 schema:value 27553489
95 rdf:type schema:PropertyValue
96 Na8a6a6c0c70b4bd4873dbde8772dcefb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Gene Expression Regulation
98 rdf:type schema:DefinedTerm
99 Na9122c08665645e2a0ba196e41d3241d schema:name nlm_unique_id
100 schema:value 100965194
101 rdf:type schema:PropertyValue
102 Nb8197a0c7f854ef2b9575c0ab13ce1fb schema:name dimensions_id
103 schema:value pub.1013528780
104 rdf:type schema:PropertyValue
105 Nbdb66e40df794518b6beee08a355a199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Animals
107 rdf:type schema:DefinedTerm
108 Nbee7c0ec5e1445a7869b30d7a91c39cf schema:name doi
109 schema:value 10.1186/s12859-016-1181-8
110 rdf:type schema:PropertyValue
111 Nd1d9a6a46dca42cc9028c911bb8efd9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Gene Regulatory Networks
113 rdf:type schema:DefinedTerm
114 Nd95347fa22714610b8dd0cc0636307c3 rdf:first sg:person.01243442363.80
115 rdf:rest N6774d25f839448d3a2e0d98315b5a39d
116 Ne96e73e058024a4fa1ef06c01ceb66cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Transcription, Genetic
118 rdf:type schema:DefinedTerm
119 Neb8b51fbbdaa4923b4a32cd0a371ce95 rdf:first sg:person.0575726100.19
120 rdf:rest N3b0f6e34d34a4423837add6c3c6cb28a
121 Nf1a618652e754a1eaf2c5be47bc25121 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Stem Cells
123 rdf:type schema:DefinedTerm
124 Nf67743c6fb0a453b9369a7d59b81ae3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Data Interpretation, Statistical
126 rdf:type schema:DefinedTerm
127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
128 schema:name Mathematical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
131 schema:name Statistics
132 rdf:type schema:DefinedTerm
133 sg:journal.1023786 schema:issn 1471-2105
134 schema:name BMC Bioinformatics
135 rdf:type schema:Periodical
136 sg:person.011430370375.41 schema:affiliation https://www.grid.ac/institutes/grid.410513.2
137 schema:familyName Choudhary
138 schema:givenName Parul
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011430370375.41
140 rdf:type schema:Person
141 sg:person.01150056064.13 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
142 schema:familyName Zarringhalam
143 schema:givenName Kourosh
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150056064.13
145 rdf:type schema:Person
146 sg:person.012217262135.21 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
147 schema:familyName Chen
148 schema:givenName Ping
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217262135.21
150 rdf:type schema:Person
151 sg:person.01243442363.80 schema:affiliation https://www.grid.ac/institutes/grid.465162.2
152 schema:familyName Ziemek
153 schema:givenName Daniel
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243442363.80
155 rdf:type schema:Person
156 sg:person.016532011735.70 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
157 schema:familyName Fakhry
158 schema:givenName Carl Tony
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016532011735.70
160 rdf:type schema:Person
161 sg:person.0575726100.19 schema:affiliation https://www.grid.ac/institutes/grid.410513.2
162 schema:familyName Gutteridge
163 schema:givenName Alex
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575726100.19
165 rdf:type schema:Person
166 sg:person.0730270711.75 schema:affiliation https://www.grid.ac/institutes/grid.410513.2
167 schema:familyName Sidders
168 schema:givenName Ben
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730270711.75
170 rdf:type schema:Person
171 sg:pub.10.1007/978-1-4614-3719-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048378485
172 https://doi.org/10.1007/978-1-4614-3719-2
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nature04296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028145633
175 https://doi.org/10.1038/nature04296
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nrc2696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006109556
178 https://doi.org/10.1038/nrc2696
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/sj.onc.1207397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026777246
181 https://doi.org/10.1038/sj.onc.1207397
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/1471-2105-13-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043851508
184 https://doi.org/10.1186/1471-2105-13-35
185 rdf:type schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1048378485 schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1083060330 schema:CreativeWork
188 https://doi.org/10.1016/0092-8674(93)90663-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1014401195
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.brainresrev.2008.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009046108
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.pain.2007.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031724896
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.pain.2014.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020736722
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.ymgme.2011.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001619868
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1074/jbc.m010768200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011313651
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1089/dia.2005.7.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059248740
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bib/bbt002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008482872
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/bts090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014257712
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/bioinformatics/btt557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020379167
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/btt703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005363149
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bja/aet128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040167316
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/gkn760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032318578
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/toxsci/kft232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001317192
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pone.0056024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018732085
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1523/jneurosci.3338-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031628040
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1523/jneurosci.3795-08.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001091757
221 rdf:type schema:CreativeWork
222 https://doi.org/10.18637/jss.v040.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672602
223 rdf:type schema:CreativeWork
224 https://doi.org/10.2174/1871527311201070844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069221790
225 rdf:type schema:CreativeWork
226 https://doi.org/10.4137/bbi.s12167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052244643
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
229 schema:name Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, 02125, Boston, USA
230 Department of Engineering, University of Massachusetts Boston, 100 Morrissey Boulevard02125, Boston, USA
231 Department of Mathematics, University of Massachusetts Boston, 100 Morrissey Boulevard, 02125, Boston, USA
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.410513.2 schema:alternateName Pfizer (United States)
234 schema:name Computational Sciences, Pfizer Worldwide Research & Development, Cambridge, USA
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.465162.2 schema:alternateName Computational Sciences (United States)
237 schema:name Computational Sciences, Pfizer Worldwide Research & Development, Berlin, USA
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...