Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Andreas Mayr, Benjamin Hofner, Matthias Schmid

ABSTRACT

BACKGROUND: When constructing new biomarker or gene signature scores for time-to-event outcomes, the underlying aims are to develop a discrimination model that helps to predict whether patients have a poor or good prognosis and to identify the most influential variables for this task. In practice, this is often done fitting Cox models. Those are, however, not necessarily optimal with respect to the resulting discriminatory power and are based on restrictive assumptions. We present a combined approach to automatically select and fit sparse discrimination models for potentially high-dimensional survival data based on boosting a smooth version of the concordance index (C-index). Due to this objective function, the resulting prediction models are optimal with respect to their ability to discriminate between patients with longer and shorter survival times. The gradient boosting algorithm is combined with the stability selection approach to enhance and control its variable selection properties. RESULTS: The resulting algorithm fits prediction models based on the rankings of the survival times and automatically selects only the most stable predictors. The performance of the approach, which works best for small numbers of informative predictors, is demonstrated in a large scale simulation study: C-index boosting in combination with stability selection is able to identify a small subset of informative predictors from a much larger set of non-informative ones while controlling the per-family error rate. In an application to discover biomarkers for breast cancer patients based on gene expression data, stability selection yielded sparser models and the resulting discriminatory power was higher than with lasso penalized Cox regression models. CONCLUSION: The combination of stability selection and C-index boosting can be used to select small numbers of informative biomarkers and to derive new prediction rules that are optimal with respect to their discriminatory power. Stability selection controls the per-family error rate which makes the new approach also appealing from an inferential point of view, as it provides an alternative to classical hypothesis tests for single predictor effects. Due to the shrinkage and variable selection properties of statistical boosting algorithms, the latter tests are typically unfeasible for prediction models fitted by boosting. More... »

PAGES

288

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-016-1149-8

DOI

http://dx.doi.org/10.1186/s12859-016-1149-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043698212

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27444890


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Discriminant Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcriptome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institut f\u00fcr Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg (FAU), Waldstr. 6, 91054, Erlangen, Germany", 
            "Institut f\u00fcr Medizinische Biometrie, Informatik und Epidemiologie, Rheinische Friedrich-Wilhelms-Universit\u00e4t Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayr", 
        "givenName": "Andreas", 
        "id": "sg:person.0607252074.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607252074.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Institut f\u00fcr Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg (FAU), Waldstr. 6, 91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofner", 
        "givenName": "Benjamin", 
        "id": "sg:person.01044432226.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044432226.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institut f\u00fcr Medizinische Biometrie, Informatik und Epidemiologie, Rheinische Friedrich-Wilhelms-Universit\u00e4t Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmid", 
        "givenName": "Matthias", 
        "id": "sg:person.0745220772.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745220772.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-11-78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000603440", 
          "https://doi.org/10.1186/1471-2105-11-78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000603440", 
          "https://doi.org/10.1186/1471-2105-11-78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2011.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001408098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-012-0382-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001684018", 
          "https://doi.org/10.1007/s00180-012-0382-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1002396415", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21700-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002396415", 
          "https://doi.org/10.1007/978-0-387-21700-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21700-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002396415", 
          "https://doi.org/10.1007/978-0-387-21700-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003725111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200900028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004499327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200900028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004499327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009434179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780030207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009817748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.5681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012219366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2011.01034.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012681255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/1544-6115.1792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017320119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017682245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017682245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018998894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019516425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019516425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1016218223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020629296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027475560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/873595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027990841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0575-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801735", 
          "https://doi.org/10.1186/s12859-015-0575-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0575-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801735", 
          "https://doi.org/10.1186/s12859-015-0575-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1056397487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029623619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-06-2765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030779547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031441710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-03-0061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032496629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0537-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037088380", 
          "https://doi.org/10.1186/s12859-015-0537-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0537-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037088380", 
          "https://doi.org/10.1186/s12859-015-0537-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038179865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1982.03320430047030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038627387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10985-007-9073-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039441469", 
          "https://doi.org/10.1007/s10985-007-9073-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0084483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039586310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2010.01459.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039779205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2005.05.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043742798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2005.05.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043742798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0716-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043993323", 
          "https://doi.org/10.1186/s12859-015-0716-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0716-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043993323", 
          "https://doi.org/10.1186/s12859-015-0716-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2005.030814.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044144954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.5464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045499374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17947-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047788005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7161(03)23001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047879007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aoas169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048372606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-sts242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049744920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0467-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049783545", 
          "https://doi.org/10.1186/s12859-015-0467-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0467-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049783545", 
          "https://doi.org/10.1186/s12859-015-0467-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051347224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280215581855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053828684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280215581855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053828684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbt059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/75.3.525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/92.4.965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.311.7019.1539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062774202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.311.7019.1539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062774202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280209105024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063903964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280209105024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063903964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214503000125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2011.ap09272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v039.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v050.i11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me11-02-0030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me13-01-0122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me13-01-0123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312233"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: When constructing new biomarker or gene signature scores for time-to-event outcomes, the underlying aims are to develop a discrimination model that helps to predict whether patients have a poor or good prognosis and to identify the most influential variables for this task. In practice, this is often done fitting Cox models. Those are, however, not necessarily optimal with respect to the resulting discriminatory power and are based on restrictive assumptions. We present a combined approach to automatically select and fit sparse discrimination models for potentially high-dimensional survival data based on boosting a smooth version of the concordance index (C-index). Due to this objective function, the resulting prediction models are optimal with respect to their ability to discriminate between patients with longer and shorter survival times. The gradient boosting algorithm is combined with the stability selection approach to enhance and control its variable selection properties.\nRESULTS: The resulting algorithm fits prediction models based on the rankings of the survival times and automatically selects only the most stable predictors. The performance of the approach, which works best for small numbers of informative predictors, is demonstrated in a large scale simulation study: C-index boosting in combination with stability selection is able to identify a small subset of informative predictors from a much larger set of non-informative ones while controlling the per-family error rate. In an application to discover biomarkers for breast cancer patients based on gene expression data, stability selection yielded sparser models and the resulting discriminatory power was higher than with lasso penalized Cox regression models.\nCONCLUSION: The combination of stability selection and C-index boosting can be used to select small numbers of informative biomarkers and to derive new prediction rules that are optimal with respect to their discriminatory power. Stability selection controls the per-family error rate which makes the new approach also appealing from an inferential point of view, as it provides an alternative to classical hypothesis tests for single predictor effects. Due to the shrinkage and variable selection properties of statistical boosting algorithms, the latter tests are typically unfeasible for prediction models fitted by boosting.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-016-1149-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection", 
    "pagination": "288", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d026b22824fc181016dd654bd4581e4c9da13f0daab7aa4a9df86def441ff068"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27444890"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-016-1149-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043698212"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-016-1149-8", 
      "https://app.dimensions.ai/details/publication/pub.1043698212"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-016-1149-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1149-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1149-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1149-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1149-8'


 

This table displays all metadata directly associated to this object as RDF triples.

304 TRIPLES      21 PREDICATES      95 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-016-1149-8 schema:about N0b50f749c5004268b0d1f85bc359fd2b
2 N1dbc3bcaa8394bcb8276597478c41584
3 N2969ccd51ea04ef48598e21eede50318
4 N36a6057cff764083ace1cd002697c6bd
5 N408fee03d1ab4ac8a057a092f6099d6a
6 N6728d743764b44428db872c5c23772c5
7 N890adfd6e8764381bf3b802b03cc5ada
8 N8cc105520e8740d9bbb8ee9cab31594a
9 Nb8617a706a6549fb981c1dd9e5422c21
10 Nb887d9149408483f93a41e6ff159ba87
11 Ncb65f09bc4af4892976d98b91b090239
12 Nddda4da97d9c48a2a1d64965cf7145b0
13 anzsrc-for:08
14 anzsrc-for:0801
15 schema:author Naa7275dd474540cbb1a90c82143a6186
16 schema:citation sg:pub.10.1007/978-0-387-21700-0
17 sg:pub.10.1007/s00180-012-0382-5
18 sg:pub.10.1007/s10985-007-9073-x
19 sg:pub.10.1023/a:1010933404324
20 sg:pub.10.1186/1471-2105-11-78
21 sg:pub.10.1186/s12859-015-0467-6
22 sg:pub.10.1186/s12859-015-0537-9
23 sg:pub.10.1186/s12859-015-0575-3
24 sg:pub.10.1186/s12859-015-0716-8
25 https://app.dimensions.ai/details/publication/pub.1002396415
26 https://doi.org/10.1001/jama.1982.03320430047030
27 https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
28 https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5
29 https://doi.org/10.1002/bimj.200900028
30 https://doi.org/10.1002/sim.1802
31 https://doi.org/10.1002/sim.1946
32 https://doi.org/10.1002/sim.2427
33 https://doi.org/10.1002/sim.4154
34 https://doi.org/10.1002/sim.4780030207
35 https://doi.org/10.1002/sim.5464
36 https://doi.org/10.1002/sim.5681
37 https://doi.org/10.1016/j.artmed.2011.06.006
38 https://doi.org/10.1016/j.jtbi.2005.05.034
39 https://doi.org/10.1016/s0140-6736(05)17947-1
40 https://doi.org/10.1016/s0169-7161(03)23001-7
41 https://doi.org/10.1093/bib/bbt059
42 https://doi.org/10.1093/bioinformatics/bti724
43 https://doi.org/10.1093/biomet/75.3.525
44 https://doi.org/10.1093/biomet/92.4.965
45 https://doi.org/10.1111/biom.12455
46 https://doi.org/10.1111/biom.12470
47 https://doi.org/10.1111/j.0006-341x.2005.030814.x
48 https://doi.org/10.1111/j.1467-9868.2010.00740.x
49 https://doi.org/10.1111/j.1467-9868.2011.01034.x
50 https://doi.org/10.1111/j.1541-0420.2010.01459.x
51 https://doi.org/10.1136/bmj.311.7019.1539
52 https://doi.org/10.1155/2013/873595
53 https://doi.org/10.1158/1078-0432.ccr-03-0061
54 https://doi.org/10.1158/1078-0432.ccr-06-2765
55 https://doi.org/10.1177/0962280209105024
56 https://doi.org/10.1177/0962280215581855
57 https://doi.org/10.1198/016214503000125
58 https://doi.org/10.1198/jasa.2011.ap09272
59 https://doi.org/10.1214/07-sts242
60 https://doi.org/10.1214/08-aoas169
61 https://doi.org/10.1214/aos/1016218223
62 https://doi.org/10.1214/ss/1056397487
63 https://doi.org/10.1371/journal.pone.0084483
64 https://doi.org/10.1515/1544-6115.1792
65 https://doi.org/10.18637/jss.v039.i05
66 https://doi.org/10.18637/jss.v050.i11
67 https://doi.org/10.3414/me11-02-0030
68 https://doi.org/10.3414/me13-01-0122
69 https://doi.org/10.3414/me13-01-0123
70 schema:datePublished 2016-12
71 schema:datePublishedReg 2016-12-01
72 schema:description BACKGROUND: When constructing new biomarker or gene signature scores for time-to-event outcomes, the underlying aims are to develop a discrimination model that helps to predict whether patients have a poor or good prognosis and to identify the most influential variables for this task. In practice, this is often done fitting Cox models. Those are, however, not necessarily optimal with respect to the resulting discriminatory power and are based on restrictive assumptions. We present a combined approach to automatically select and fit sparse discrimination models for potentially high-dimensional survival data based on boosting a smooth version of the concordance index (C-index). Due to this objective function, the resulting prediction models are optimal with respect to their ability to discriminate between patients with longer and shorter survival times. The gradient boosting algorithm is combined with the stability selection approach to enhance and control its variable selection properties. RESULTS: The resulting algorithm fits prediction models based on the rankings of the survival times and automatically selects only the most stable predictors. The performance of the approach, which works best for small numbers of informative predictors, is demonstrated in a large scale simulation study: C-index boosting in combination with stability selection is able to identify a small subset of informative predictors from a much larger set of non-informative ones while controlling the per-family error rate. In an application to discover biomarkers for breast cancer patients based on gene expression data, stability selection yielded sparser models and the resulting discriminatory power was higher than with lasso penalized Cox regression models. CONCLUSION: The combination of stability selection and C-index boosting can be used to select small numbers of informative biomarkers and to derive new prediction rules that are optimal with respect to their discriminatory power. Stability selection controls the per-family error rate which makes the new approach also appealing from an inferential point of view, as it provides an alternative to classical hypothesis tests for single predictor effects. Due to the shrinkage and variable selection properties of statistical boosting algorithms, the latter tests are typically unfeasible for prediction models fitted by boosting.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree true
76 schema:isPartOf N3b8364ea33a24e67980fd8def7dcc7e7
77 N6383051615d246de8bfa3e87341bc8ba
78 sg:journal.1023786
79 schema:name Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection
80 schema:pagination 288
81 schema:productId N62890edfb15248a0979f182cb8d937b5
82 N98c5d4d4d1c74944b213f52f546b978f
83 Nc5758584c0884a1e9af51a963a2cb977
84 Ncf5fa5b6a6ed44e2a491892dd86601fc
85 Nfaf9760811894d27b7e314682dec90d1
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043698212
87 https://doi.org/10.1186/s12859-016-1149-8
88 schema:sdDatePublished 2019-04-11T12:43
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nd910fa72be344f958b27f4096cd143fc
91 schema:url https://link.springer.com/10.1186%2Fs12859-016-1149-8
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N0b50f749c5004268b0d1f85bc359fd2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Neoplasm Metastasis
97 rdf:type schema:DefinedTerm
98 N1dbc3bcaa8394bcb8276597478c41584 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Algorithms
100 rdf:type schema:DefinedTerm
101 N2969ccd51ea04ef48598e21eede50318 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Discriminant Analysis
103 rdf:type schema:DefinedTerm
104 N36a6057cff764083ace1cd002697c6bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Breast Neoplasms
106 rdf:type schema:DefinedTerm
107 N3b8364ea33a24e67980fd8def7dcc7e7 schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 N408fee03d1ab4ac8a057a092f6099d6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Survival Analysis
111 rdf:type schema:DefinedTerm
112 N62890edfb15248a0979f182cb8d937b5 schema:name readcube_id
113 schema:value d026b22824fc181016dd654bd4581e4c9da13f0daab7aa4a9df86def441ff068
114 rdf:type schema:PropertyValue
115 N6383051615d246de8bfa3e87341bc8ba schema:volumeNumber 17
116 rdf:type schema:PublicationVolume
117 N6728d743764b44428db872c5c23772c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 N890adfd6e8764381bf3b802b03cc5ada schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Female
122 rdf:type schema:DefinedTerm
123 N8cc105520e8740d9bbb8ee9cab31594a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Prognosis
125 rdf:type schema:DefinedTerm
126 N98c5d4d4d1c74944b213f52f546b978f schema:name pubmed_id
127 schema:value 27444890
128 rdf:type schema:PropertyValue
129 Na7241ec1ab7344ada83f1f8f46914505 rdf:first sg:person.01044432226.13
130 rdf:rest Ne09bbb897b064168a44024d2a80df689
131 Naa7275dd474540cbb1a90c82143a6186 rdf:first sg:person.0607252074.00
132 rdf:rest Na7241ec1ab7344ada83f1f8f46914505
133 Nb8617a706a6549fb981c1dd9e5422c21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Biomarkers
135 rdf:type schema:DefinedTerm
136 Nb887d9149408483f93a41e6ff159ba87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Models, Theoretical
138 rdf:type schema:DefinedTerm
139 Nc5758584c0884a1e9af51a963a2cb977 schema:name nlm_unique_id
140 schema:value 100965194
141 rdf:type schema:PropertyValue
142 Ncb65f09bc4af4892976d98b91b090239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Transcriptome
144 rdf:type schema:DefinedTerm
145 Ncf5fa5b6a6ed44e2a491892dd86601fc schema:name doi
146 schema:value 10.1186/s12859-016-1149-8
147 rdf:type schema:PropertyValue
148 Nd910fa72be344f958b27f4096cd143fc schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Nddda4da97d9c48a2a1d64965cf7145b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Proportional Hazards Models
152 rdf:type schema:DefinedTerm
153 Ne09bbb897b064168a44024d2a80df689 rdf:first sg:person.0745220772.74
154 rdf:rest rdf:nil
155 Nfaf9760811894d27b7e314682dec90d1 schema:name dimensions_id
156 schema:value pub.1043698212
157 rdf:type schema:PropertyValue
158 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
159 schema:name Information and Computing Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
162 schema:name Artificial Intelligence and Image Processing
163 rdf:type schema:DefinedTerm
164 sg:journal.1023786 schema:issn 1471-2105
165 schema:name BMC Bioinformatics
166 rdf:type schema:Periodical
167 sg:person.01044432226.13 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
168 schema:familyName Hofner
169 schema:givenName Benjamin
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044432226.13
171 rdf:type schema:Person
172 sg:person.0607252074.00 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
173 schema:familyName Mayr
174 schema:givenName Andreas
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607252074.00
176 rdf:type schema:Person
177 sg:person.0745220772.74 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
178 schema:familyName Schmid
179 schema:givenName Matthias
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745220772.74
181 rdf:type schema:Person
182 sg:pub.10.1007/978-0-387-21700-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002396415
183 https://doi.org/10.1007/978-0-387-21700-0
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00180-012-0382-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001684018
186 https://doi.org/10.1007/s00180-012-0382-5
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s10985-007-9073-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039441469
189 https://doi.org/10.1007/s10985-007-9073-x
190 rdf:type schema:CreativeWork
191 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
192 https://doi.org/10.1023/a:1010933404324
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2105-11-78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000603440
195 https://doi.org/10.1186/1471-2105-11-78
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/s12859-015-0467-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049783545
198 https://doi.org/10.1186/s12859-015-0467-6
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/s12859-015-0537-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037088380
201 https://doi.org/10.1186/s12859-015-0537-9
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/s12859-015-0575-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028801735
204 https://doi.org/10.1186/s12859-015-0575-3
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/s12859-015-0716-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043993323
207 https://doi.org/10.1186/s12859-015-0716-8
208 rdf:type schema:CreativeWork
209 https://app.dimensions.ai/details/publication/pub.1002396415 schema:CreativeWork
210 https://doi.org/10.1001/jama.1982.03320430047030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038627387
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009434179
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017682245
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/bimj.200900028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004499327
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/sim.1802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027475560
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/sim.1946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031441710
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/sim.2427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019516425
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/sim.4154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003725111
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/sim.4780030207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009817748
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/sim.5464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045499374
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/sim.5681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012219366
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.artmed.2011.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001408098
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.jtbi.2005.05.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043742798
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/s0140-6736(05)17947-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788005
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/s0169-7161(03)23001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047879007
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/bib/bbt059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413025
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/bioinformatics/bti724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051347224
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/biomet/75.3.525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419849
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/biomet/92.4.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421463
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1111/biom.12455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018998894
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1111/biom.12470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038179865
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/j.0006-341x.2005.030814.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044144954
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1111/j.1467-9868.2010.00740.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000696823
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1111/j.1467-9868.2011.01034.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681255
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1111/j.1541-0420.2010.01459.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039779205
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1136/bmj.311.7019.1539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062774202
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1155/2013/873595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027990841
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1158/1078-0432.ccr-03-0061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032496629
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1158/1078-0432.ccr-06-2765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030779547
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1177/0962280209105024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063903964
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1177/0962280215581855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053828684
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1198/016214503000125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198102
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1198/jasa.2011.ap09272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200650
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1214/07-sts242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049744920
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1214/08-aoas169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048372606
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1214/aos/1016218223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020629296
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1214/ss/1056397487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029623619
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1371/journal.pone.0084483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039586310
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1515/1544-6115.1792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017320119
287 rdf:type schema:CreativeWork
288 https://doi.org/10.18637/jss.v039.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672583
289 rdf:type schema:CreativeWork
290 https://doi.org/10.18637/jss.v050.i11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672753
291 rdf:type schema:CreativeWork
292 https://doi.org/10.3414/me11-02-0030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312140
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3414/me13-01-0122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312232
295 rdf:type schema:CreativeWork
296 https://doi.org/10.3414/me13-01-0123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312233
297 rdf:type schema:CreativeWork
298 https://www.grid.ac/institutes/grid.10388.32 schema:alternateName University of Bonn
299 schema:name Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054, Erlangen, Germany
300 Institut für Medizinische Biometrie, Informatik und Epidemiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
301 rdf:type schema:Organization
302 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
303 schema:name Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054, Erlangen, Germany
304 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...