PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Achal Rastogi, Omer Murik, Chris Bowler, Leila Tirichine

ABSTRACT

BACKGROUND: With the emerging interest in phytoplankton research, the need to establish genetic tools for the functional characterization of genes is indispensable. The CRISPR/Cas9 system is now well recognized as an efficient and accurate reverse genetic tool for genome editing. Several computational tools have been published allowing researchers to find candidate target sequences for the engineering of the CRISPR vectors, while searching possible off-targets for the predicted candidates. These tools provide built-in genome databases of common model organisms that are used for CRISPR target prediction. Although their predictions are highly sensitive, the applicability to non-model genomes, most notably protists, makes their design inadequate. This motivated us to design a new CRISPR target finding tool, PhytoCRISP-Ex. Our software offers CRIPSR target predictions using an extended list of phytoplankton genomes and also delivers a user-friendly standalone application that can be used for any genome. RESULTS: The software attempts to integrate, for the first time, most available phytoplankton genomes information and provide a web-based platform for Cas9 target prediction within them with high sensitivity. By offering a standalone version, PhytoCRISP-Ex maintains an independence to be used with any organism and widens its applicability in high throughput pipelines. PhytoCRISP-Ex out pars all the existing tools by computing the availability of restriction sites over the most probable Cas9 cleavage sites, which can be ideal for mutant screens. CONCLUSIONS: PhytoCRISP-Ex is a simple, fast and accurate web interface with 13 pre-indexed and presently updating phytoplankton genomes. The software was also designed as a UNIX-based standalone application that allows the user to search for target sequences in the genomes of a variety of other species. More... »

PAGES

261

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-016-1143-1

DOI

http://dx.doi.org/10.1186/s12859-016-1143-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042372818

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27363443


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Cas Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Biologie de l'\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.462036.5", 
          "name": [
            "Institut de Biologie de l\u2019Ecole Normale Sup\u00e9rieure (IBENS), Ecole Normale Sup\u00e9rieure, PSL Research University, CNRS UMR 8197, INSERM U1024, 46 rue d\u2019Ulm, F-75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rastogi", 
        "givenName": "Achal", 
        "id": "sg:person.01203021515.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203021515.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie de l'\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.462036.5", 
          "name": [
            "Institut de Biologie de l\u2019Ecole Normale Sup\u00e9rieure (IBENS), Ecole Normale Sup\u00e9rieure, PSL Research University, CNRS UMR 8197, INSERM U1024, 46 rue d\u2019Ulm, F-75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murik", 
        "givenName": "Omer", 
        "id": "sg:person.0722512726.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722512726.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie de l'\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.462036.5", 
          "name": [
            "Institut de Biologie de l\u2019Ecole Normale Sup\u00e9rieure (IBENS), Ecole Normale Sup\u00e9rieure, PSL Research University, CNRS UMR 8197, INSERM U1024, 46 rue d\u2019Ulm, F-75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bowler", 
        "givenName": "Chris", 
        "id": "sg:person.0712003056.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712003056.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie de l'\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.462036.5", 
          "name": [
            "Institut de Biologie de l\u2019Ecole Normale Sup\u00e9rieure (IBENS), Ecole Normale Sup\u00e9rieure, PSL Research University, CNRS UMR 8197, INSERM U1024, 46 rue d\u2019Ulm, F-75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tirichine", 
        "givenName": "Leila", 
        "id": "sg:person.0674246303.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674246303.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1262073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000855566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008703730", 
          "https://doi.org/10.1038/nmeth.2649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.156075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009727939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.156075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009727939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013935649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014083513", 
          "https://doi.org/10.1038/nbt.3437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40484-014-0030-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014529473", 
          "https://doi.org/10.1007/s40484-014-0030-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0108424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014572156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2013.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016534425", 
          "https://doi.org/10.1038/nprot.2013.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019888616", 
          "https://doi.org/10.1038/nbt.2508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020146143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0119372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020897106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1232033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022072971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023043883", 
          "https://doi.org/10.1038/nmeth.2812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023792803", 
          "https://doi.org/10.1038/nmeth.2532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1261359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029773582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037333069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2011.04540.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037424308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0068708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040608504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041543272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0100448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042244721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042813151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043348902", 
          "https://doi.org/10.1038/nbt.2916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1261605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044134705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/cr.2013.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045561746", 
          "https://doi.org/10.1038/cr.2013.114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046173829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051395827", 
          "https://doi.org/10.1038/nmeth.3473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/annotation/bb3baaad-6b58-41a0-96cc-7bdc819de411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065269071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/genet.2015.3.173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084446179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/005074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/005074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/005074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109322"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: With the emerging interest in phytoplankton research, the need to establish genetic tools for the functional characterization of genes is indispensable. The CRISPR/Cas9 system is now well recognized as an efficient and accurate reverse genetic tool for genome editing. Several computational tools have been published allowing researchers to find candidate target sequences for the engineering of the CRISPR vectors, while searching possible off-targets for the predicted candidates. These tools provide built-in genome databases of common model organisms that are used for CRISPR target prediction. Although their predictions are highly sensitive, the applicability to non-model genomes, most notably protists, makes their design inadequate. This motivated us to design a new CRISPR target finding tool, PhytoCRISP-Ex. Our software offers CRIPSR target predictions using an extended list of phytoplankton genomes and also delivers a user-friendly standalone application that can be used for any genome.\nRESULTS: The software attempts to integrate, for the first time, most available phytoplankton genomes information and provide a web-based platform for Cas9 target prediction within them with high sensitivity. By offering a standalone version, PhytoCRISP-Ex maintains an independence to be used with any organism and widens its applicability in high throughput pipelines. PhytoCRISP-Ex out pars all the existing tools by computing the availability of restriction sites over the most probable Cas9 cleavage sites, which can be ideal for mutant screens.\nCONCLUSIONS: PhytoCRISP-Ex is a simple, fast and accurate web interface with 13 pre-indexed and presently updating phytoplankton genomes. The software was also designed as a UNIX-based standalone application that allows the user to search for target sequences in the genomes of a variety of other species.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-016-1143-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing", 
    "pagination": "261", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c9d7437e6511c87e826129c159c3313eecd287fd6c5b135d47df3f9b5a7109a1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27363443"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-016-1143-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042372818"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-016-1143-1", 
      "https://app.dimensions.ai/details/publication/pub.1042372818"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12859-016-1143-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1143-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1143-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1143-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-1143-1'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      62 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-016-1143-1 schema:about N353a8bd3339441f39884e3c78694547f
2 N890af4705c1145ebac8d68e164ec75a8
3 N9212c6970f0e42b5aa6c3c79730dcf34
4 Ndc819feb4ea4428fb6a48970123d839a
5 anzsrc-for:06
6 anzsrc-for:0604
7 schema:author N6faf960c65c9464c9aabfdbc318435bf
8 schema:citation sg:pub.10.1007/s40484-014-0030-x
9 sg:pub.10.1038/cr.2013.114
10 sg:pub.10.1038/nbt.2508
11 sg:pub.10.1038/nbt.2916
12 sg:pub.10.1038/nbt.3437
13 sg:pub.10.1038/nmeth.2532
14 sg:pub.10.1038/nmeth.2649
15 sg:pub.10.1038/nmeth.2812
16 sg:pub.10.1038/nmeth.3473
17 sg:pub.10.1038/nprot.2013.143
18 https://doi.org/10.1016/j.cell.2013.04.025
19 https://doi.org/10.1016/j.cell.2014.01.027
20 https://doi.org/10.1093/bioinformatics/btt764
21 https://doi.org/10.1093/bioinformatics/btu743
22 https://doi.org/10.1093/nar/gkt135
23 https://doi.org/10.1093/nar/gku410
24 https://doi.org/10.1101/005074
25 https://doi.org/10.1111/j.1365-313x.2011.04540.x
26 https://doi.org/10.1126/science.1232033
27 https://doi.org/10.1126/science.1261359
28 https://doi.org/10.1126/science.1261605
29 https://doi.org/10.1126/science.1262073
30 https://doi.org/10.1371/annotation/bb3baaad-6b58-41a0-96cc-7bdc819de411
31 https://doi.org/10.1371/journal.pone.0068708
32 https://doi.org/10.1371/journal.pone.0100448
33 https://doi.org/10.1371/journal.pone.0108424
34 https://doi.org/10.1371/journal.pone.0119372
35 https://doi.org/10.1534/genetics.113.156075
36 https://doi.org/10.3934/genet.2015.3.173
37 schema:datePublished 2016-12
38 schema:datePublishedReg 2016-12-01
39 schema:description BACKGROUND: With the emerging interest in phytoplankton research, the need to establish genetic tools for the functional characterization of genes is indispensable. The CRISPR/Cas9 system is now well recognized as an efficient and accurate reverse genetic tool for genome editing. Several computational tools have been published allowing researchers to find candidate target sequences for the engineering of the CRISPR vectors, while searching possible off-targets for the predicted candidates. These tools provide built-in genome databases of common model organisms that are used for CRISPR target prediction. Although their predictions are highly sensitive, the applicability to non-model genomes, most notably protists, makes their design inadequate. This motivated us to design a new CRISPR target finding tool, PhytoCRISP-Ex. Our software offers CRIPSR target predictions using an extended list of phytoplankton genomes and also delivers a user-friendly standalone application that can be used for any genome. RESULTS: The software attempts to integrate, for the first time, most available phytoplankton genomes information and provide a web-based platform for Cas9 target prediction within them with high sensitivity. By offering a standalone version, PhytoCRISP-Ex maintains an independence to be used with any organism and widens its applicability in high throughput pipelines. PhytoCRISP-Ex out pars all the existing tools by computing the availability of restriction sites over the most probable Cas9 cleavage sites, which can be ideal for mutant screens. CONCLUSIONS: PhytoCRISP-Ex is a simple, fast and accurate web interface with 13 pre-indexed and presently updating phytoplankton genomes. The software was also designed as a UNIX-based standalone application that allows the user to search for target sequences in the genomes of a variety of other species.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N142fce75dad24734845e86b60e025ac8
44 Ncedeabbc8c2d44e98ca83feb3a19fcb4
45 sg:journal.1023786
46 schema:name PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing
47 schema:pagination 261
48 schema:productId N166093b7ed514e1d8efb2109f487d05f
49 N2a2eda032e0d4263abfd7fccd7c3a851
50 N490245a02c9e43dd912222278c928f0c
51 Nf4ca6c73b4c64d908215593a1ecc5db8
52 Nfc4244c536ec424f90d436c02dc8bb10
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042372818
54 https://doi.org/10.1186/s12859-016-1143-1
55 schema:sdDatePublished 2019-04-11T12:36
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nc0d414d47d3c42c0b91f49c849ab3188
58 schema:url https://link.springer.com/10.1186%2Fs12859-016-1143-1
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N142fce75dad24734845e86b60e025ac8 schema:volumeNumber 17
63 rdf:type schema:PublicationVolume
64 N166093b7ed514e1d8efb2109f487d05f schema:name readcube_id
65 schema:value c9d7437e6511c87e826129c159c3313eecd287fd6c5b135d47df3f9b5a7109a1
66 rdf:type schema:PropertyValue
67 N2a2eda032e0d4263abfd7fccd7c3a851 schema:name nlm_unique_id
68 schema:value 100965194
69 rdf:type schema:PropertyValue
70 N334f8867530345b79f10b978421764d4 rdf:first sg:person.0712003056.12
71 rdf:rest Nc15a609efda8499b89f21d92eb0ec2bb
72 N353a8bd3339441f39884e3c78694547f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name CRISPR-Cas Systems
74 rdf:type schema:DefinedTerm
75 N490245a02c9e43dd912222278c928f0c schema:name dimensions_id
76 schema:value pub.1042372818
77 rdf:type schema:PropertyValue
78 N6faf960c65c9464c9aabfdbc318435bf rdf:first sg:person.01203021515.11
79 rdf:rest N9130ebb53be54dce8c18124f9517338c
80 N890af4705c1145ebac8d68e164ec75a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Internet
82 rdf:type schema:DefinedTerm
83 N9130ebb53be54dce8c18124f9517338c rdf:first sg:person.0722512726.61
84 rdf:rest N334f8867530345b79f10b978421764d4
85 N9212c6970f0e42b5aa6c3c79730dcf34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Genome, Human
87 rdf:type schema:DefinedTerm
88 Nc0d414d47d3c42c0b91f49c849ab3188 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nc15a609efda8499b89f21d92eb0ec2bb rdf:first sg:person.0674246303.01
91 rdf:rest rdf:nil
92 Ncedeabbc8c2d44e98ca83feb3a19fcb4 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Ndc819feb4ea4428fb6a48970123d839a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Humans
96 rdf:type schema:DefinedTerm
97 Nf4ca6c73b4c64d908215593a1ecc5db8 schema:name doi
98 schema:value 10.1186/s12859-016-1143-1
99 rdf:type schema:PropertyValue
100 Nfc4244c536ec424f90d436c02dc8bb10 schema:name pubmed_id
101 schema:value 27363443
102 rdf:type schema:PropertyValue
103 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
104 schema:name Biological Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
107 schema:name Genetics
108 rdf:type schema:DefinedTerm
109 sg:journal.1023786 schema:issn 1471-2105
110 schema:name BMC Bioinformatics
111 rdf:type schema:Periodical
112 sg:person.01203021515.11 schema:affiliation https://www.grid.ac/institutes/grid.462036.5
113 schema:familyName Rastogi
114 schema:givenName Achal
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203021515.11
116 rdf:type schema:Person
117 sg:person.0674246303.01 schema:affiliation https://www.grid.ac/institutes/grid.462036.5
118 schema:familyName Tirichine
119 schema:givenName Leila
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674246303.01
121 rdf:type schema:Person
122 sg:person.0712003056.12 schema:affiliation https://www.grid.ac/institutes/grid.462036.5
123 schema:familyName Bowler
124 schema:givenName Chris
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712003056.12
126 rdf:type schema:Person
127 sg:person.0722512726.61 schema:affiliation https://www.grid.ac/institutes/grid.462036.5
128 schema:familyName Murik
129 schema:givenName Omer
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722512726.61
131 rdf:type schema:Person
132 sg:pub.10.1007/s40484-014-0030-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014529473
133 https://doi.org/10.1007/s40484-014-0030-x
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/cr.2013.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045561746
136 https://doi.org/10.1038/cr.2013.114
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nbt.2508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019888616
139 https://doi.org/10.1038/nbt.2508
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nbt.2916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043348902
142 https://doi.org/10.1038/nbt.2916
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nbt.3437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014083513
145 https://doi.org/10.1038/nbt.3437
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nmeth.2532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023792803
148 https://doi.org/10.1038/nmeth.2532
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nmeth.2649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008703730
151 https://doi.org/10.1038/nmeth.2649
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nmeth.2812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023043883
154 https://doi.org/10.1038/nmeth.2812
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nmeth.3473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051395827
157 https://doi.org/10.1038/nmeth.3473
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nprot.2013.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016534425
160 https://doi.org/10.1038/nprot.2013.143
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.cell.2013.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013935649
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.cell.2014.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046173829
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/btt764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041543272
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/btu743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037333069
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/nar/gkt135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042813151
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/nar/gku410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020146143
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1101/005074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085109322
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.1365-313x.2011.04540.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037424308
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.1232033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072971
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.1261359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029773582
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1261605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044134705
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1262073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000855566
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1371/annotation/bb3baaad-6b58-41a0-96cc-7bdc819de411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065269071
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1371/journal.pone.0068708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040608504
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1371/journal.pone.0100448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042244721
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1371/journal.pone.0108424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014572156
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1371/journal.pone.0119372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020897106
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1534/genetics.113.156075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009727939
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3934/genet.2015.3.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084446179
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.462036.5 schema:alternateName Institut de Biologie de l'École Normale Supérieure
201 schema:name Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL Research University, CNRS UMR 8197, INSERM U1024, 46 rue d’Ulm, F-75005, Paris, France
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...