Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Mihails Delmans, Martin Hemberg

ABSTRACT

BACKGROUND: The advent of high throughput RNA-seq at the single-cell level has opened up new opportunities to elucidate the heterogeneity of gene expression. One of the most widespread applications of RNA-seq is to identify genes which are differentially expressed between two experimental conditions. RESULTS: We present a discrete, distributional method for differential gene expression (D(3)E), a novel algorithm specifically designed for single-cell RNA-seq data. We use synthetic data to evaluate D(3)E, demonstrating that it can detect changes in expression, even when the mean level remains unchanged. Since D(3)E is based on an analytically tractable stochastic model, it provides additional biological insights by quantifying biologically meaningful properties, such as the average burst size and frequency. We use D(3)E to investigate experimental data, and with the help of the underlying model, we directly test hypotheses about the driving mechanism behind changes in gene expression. CONCLUSION: Evaluation using synthetic data shows that D(3)E performs better than other methods for identifying differentially expressed genes since it is designed to take full advantage of the information available from single-cell RNA-seq experiments. Moreover, the analytical model underlying D(3)E makes it possible to gain additional biological insights. More... »

PAGES

110

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-016-0944-6

DOI

http://dx.doi.org/10.1186/s12859-016-0944-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004557618

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26927822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Single-Cell Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistical Distributions", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delmans", 
        "givenName": "Mihails", 
        "id": "sg:person.0714650562.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714650562.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Genome Campus, CB10 1SA, Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemberg", 
        "givenName": "Martin", 
        "id": "sg:person.0777452173.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777452173.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2005.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003070427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxs001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004943295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007998558", 
          "https://doi.org/10.1038/nmeth.1482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008162673", 
          "https://doi.org/10.1038/nbt.2931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.43.7.553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008211467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-4-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009889574", 
          "https://doi.org/10.1186/1752-0509-4-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011351790", 
          "https://doi.org/10.1038/nbt.2642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dsn030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014322004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015222646", 
          "https://doi.org/10.1186/s13059-014-0550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015866289", 
          "https://doi.org/10.1038/nmeth.2967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016098431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016478887", 
          "https://doi.org/10.1038/nature08781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016478887", 
          "https://doi.org/10.1038/nature08781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0089673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017367979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017566891", 
          "https://doi.org/10.1038/nmeth.2645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.09.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018463905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-015-0805-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018620566", 
          "https://doi.org/10.1186/s13059-015-0805-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04898-2_420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020142160", 
          "https://doi.org/10.1007/978-3-642-04898-2_420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020249428", 
          "https://doi.org/10.1038/nrg2934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(76)90041-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020380039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022155307", 
          "https://doi.org/10.1038/nmeth.1315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022155307", 
          "https://doi.org/10.1038/nmeth.1315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.110882.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024095958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2006.03.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025966713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027021432", 
          "https://doi.org/10.1038/nmeth.2930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/tpbi.1995.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027444563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2199-9-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028885990", 
          "https://doi.org/10.1186/1471-2199-9-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1056562461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029578751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031857499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033777014", 
          "https://doi.org/10.1038/nature10098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.177725.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033981600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1245316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035294760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-9-r95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036803445", 
          "https://doi.org/10.1186/gb-2013-14-9-r95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(78)90326-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039101850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.043836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043079309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-1-r7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043158487", 
          "https://doi.org/10.1186/gb-2013-14-1-r7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045152751", 
          "https://doi.org/10.1038/nbt.2450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177704477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2119/2006-00107.trevino", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068964978", 
          "https://doi.org/10.2119/2006-00107.trevino"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2119/2006-00107.trevino", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068964978", 
          "https://doi.org/10.2119/2006-00107.trevino"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2119/2006-00107.trevino", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068964978", 
          "https://doi.org/10.2119/2006-00107.trevino"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077454889", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/019141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085103885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/019141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085103885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/019141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085103885"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: The advent of high throughput RNA-seq at the single-cell level has opened up new opportunities to elucidate the heterogeneity of gene expression. One of the most widespread applications of RNA-seq is to identify genes which are differentially expressed between two experimental conditions.\nRESULTS: We present a discrete, distributional method for differential gene expression (D(3)E), a novel algorithm specifically designed for single-cell RNA-seq data. We use synthetic data to evaluate D(3)E, demonstrating that it can detect changes in expression, even when the mean level remains unchanged. Since D(3)E is based on an analytically tractable stochastic model, it provides additional biological insights by quantifying biologically meaningful properties, such as the average burst size and frequency. We use D(3)E to investigate experimental data, and with the help of the underlying model, we directly test hypotheses about the driving mechanism behind changes in gene expression.\nCONCLUSION: Evaluation using synthetic data shows that D(3)E performs better than other methods for identifying differentially expressed genes since it is designed to take full advantage of the information available from single-cell RNA-seq experiments. Moreover, the analytical model underlying D(3)E makes it possible to gain additional biological insights.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-016-0944-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data", 
    "pagination": "110", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15b7fe91eef54613f8e2106fabd00bb9ee76d9cc4c2a769b6e75a64928cd3b6c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26927822"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-016-0944-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004557618"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-016-0944-6", 
      "https://app.dimensions.ai/details/publication/pub.1004557618"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12859-016-0944-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-0944-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-0944-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-0944-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-0944-6'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      78 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-016-0944-6 schema:about N16134f0f52b7417fa6abe22f78640651
2 N3ea7f7207e6448279ef40ee8bde37257
3 N41b4f67812344171bd872daedad9c36b
4 N8368eb6142394c39878e1f914b7c71fb
5 N9439b271645844a7a055b095da786bcf
6 Nb4616fa5c85a4a43ab003fdece8528ec
7 Nbb493ea972a747e8962dc1413b31114f
8 Nfabdf738618d4d46afd89b9905786b9f
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author Nab6d62d9bc72418a982c1c981f22cb68
12 schema:citation sg:pub.10.1007/978-3-642-04898-2_420
13 sg:pub.10.1038/nature08781
14 sg:pub.10.1038/nature10098
15 sg:pub.10.1038/nbt.2450
16 sg:pub.10.1038/nbt.2642
17 sg:pub.10.1038/nbt.2931
18 sg:pub.10.1038/nmeth.1315
19 sg:pub.10.1038/nmeth.1482
20 sg:pub.10.1038/nmeth.2645
21 sg:pub.10.1038/nmeth.2930
22 sg:pub.10.1038/nmeth.2967
23 sg:pub.10.1038/nrg2934
24 sg:pub.10.1186/1471-2199-9-63
25 sg:pub.10.1186/1752-0509-4-2
26 sg:pub.10.1186/gb-2013-14-1-r7
27 sg:pub.10.1186/gb-2013-14-9-r95
28 sg:pub.10.1186/s13059-014-0550-8
29 sg:pub.10.1186/s13059-015-0805-z
30 sg:pub.10.2119/2006-00107.trevino
31 https://app.dimensions.ai/details/publication/pub.1077454889
32 https://doi.org/10.1006/tpbi.1995.1027
33 https://doi.org/10.1016/0021-9991(76)90041-3
34 https://doi.org/10.1016/0022-5193(78)90326-0
35 https://doi.org/10.1016/j.cell.2005.06.006
36 https://doi.org/10.1016/j.cell.2008.09.050
37 https://doi.org/10.1016/j.cub.2006.03.092
38 https://doi.org/10.1073/pnas.43.7.553
39 https://doi.org/10.1093/bioinformatics/btp616
40 https://doi.org/10.1093/biostatistics/kxs001
41 https://doi.org/10.1093/dnares/dsn030
42 https://doi.org/10.1093/nar/gkv007
43 https://doi.org/10.1101/019141
44 https://doi.org/10.1101/gr.110882.110
45 https://doi.org/10.1101/gr.177725.114
46 https://doi.org/10.1126/science.1245316
47 https://doi.org/10.1214/aoms/1177704477
48 https://doi.org/10.1214/aoms/1177729437
49 https://doi.org/10.1214/aos/1056562461
50 https://doi.org/10.1242/dev.043836
51 https://doi.org/10.1371/journal.pbio.0040309
52 https://doi.org/10.1371/journal.pone.0089673
53 schema:datePublished 2016-12
54 schema:datePublishedReg 2016-12-01
55 schema:description BACKGROUND: The advent of high throughput RNA-seq at the single-cell level has opened up new opportunities to elucidate the heterogeneity of gene expression. One of the most widespread applications of RNA-seq is to identify genes which are differentially expressed between two experimental conditions. RESULTS: We present a discrete, distributional method for differential gene expression (D(3)E), a novel algorithm specifically designed for single-cell RNA-seq data. We use synthetic data to evaluate D(3)E, demonstrating that it can detect changes in expression, even when the mean level remains unchanged. Since D(3)E is based on an analytically tractable stochastic model, it provides additional biological insights by quantifying biologically meaningful properties, such as the average burst size and frequency. We use D(3)E to investigate experimental data, and with the help of the underlying model, we directly test hypotheses about the driving mechanism behind changes in gene expression. CONCLUSION: Evaluation using synthetic data shows that D(3)E performs better than other methods for identifying differentially expressed genes since it is designed to take full advantage of the information available from single-cell RNA-seq experiments. Moreover, the analytical model underlying D(3)E makes it possible to gain additional biological insights.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N991ef0179ab844399c046e68e627c735
60 Ncf29786e24e44cdca34f8e145e75cd64
61 sg:journal.1023786
62 schema:name Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data
63 schema:pagination 110
64 schema:productId N2b6ad06844a94231b1365d4f34f5be59
65 N3b2787ed274b4086a97f13d714bd65bd
66 N84a9cb7ed6914d72aebcdd0f865b4b53
67 Nb849218e50e94b4d8a0c9bf55530f769
68 Nea07da42e4f54c7691c8098c879b6eac
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004557618
70 https://doi.org/10.1186/s12859-016-0944-6
71 schema:sdDatePublished 2019-04-10T21:43
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Ne5f6a7efeddb40cd937ddcd50515b036
74 schema:url http://link.springer.com/10.1186%2Fs12859-016-0944-6
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N16134f0f52b7417fa6abe22f78640651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name High-Throughput Nucleotide Sequencing
80 rdf:type schema:DefinedTerm
81 N2b6ad06844a94231b1365d4f34f5be59 schema:name pubmed_id
82 schema:value 26927822
83 rdf:type schema:PropertyValue
84 N3000a6cd4a85401ab6e3a56269842c54 rdf:first sg:person.0777452173.73
85 rdf:rest rdf:nil
86 N3b2787ed274b4086a97f13d714bd65bd schema:name nlm_unique_id
87 schema:value 100965194
88 rdf:type schema:PropertyValue
89 N3ea7f7207e6448279ef40ee8bde37257 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Gene Expression Profiling
91 rdf:type schema:DefinedTerm
92 N41b4f67812344171bd872daedad9c36b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Sequence Analysis, RNA
94 rdf:type schema:DefinedTerm
95 N8368eb6142394c39878e1f914b7c71fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Humans
97 rdf:type schema:DefinedTerm
98 N84a9cb7ed6914d72aebcdd0f865b4b53 schema:name readcube_id
99 schema:value 15b7fe91eef54613f8e2106fabd00bb9ee76d9cc4c2a769b6e75a64928cd3b6c
100 rdf:type schema:PropertyValue
101 N9439b271645844a7a055b095da786bcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Statistical Distributions
103 rdf:type schema:DefinedTerm
104 N991ef0179ab844399c046e68e627c735 schema:volumeNumber 17
105 rdf:type schema:PublicationVolume
106 Nab6d62d9bc72418a982c1c981f22cb68 rdf:first sg:person.0714650562.03
107 rdf:rest N3000a6cd4a85401ab6e3a56269842c54
108 Nb4616fa5c85a4a43ab003fdece8528ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Single-Cell Analysis
110 rdf:type schema:DefinedTerm
111 Nb849218e50e94b4d8a0c9bf55530f769 schema:name doi
112 schema:value 10.1186/s12859-016-0944-6
113 rdf:type schema:PropertyValue
114 Nbb493ea972a747e8962dc1413b31114f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Algorithms
116 rdf:type schema:DefinedTerm
117 Ncf29786e24e44cdca34f8e145e75cd64 schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Ne5f6a7efeddb40cd937ddcd50515b036 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nea07da42e4f54c7691c8098c879b6eac schema:name dimensions_id
122 schema:value pub.1004557618
123 rdf:type schema:PropertyValue
124 Nfabdf738618d4d46afd89b9905786b9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name RNA
126 rdf:type schema:DefinedTerm
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
131 schema:name Genetics
132 rdf:type schema:DefinedTerm
133 sg:journal.1023786 schema:issn 1471-2105
134 schema:name BMC Bioinformatics
135 rdf:type schema:Periodical
136 sg:person.0714650562.03 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
137 schema:familyName Delmans
138 schema:givenName Mihails
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714650562.03
140 rdf:type schema:Person
141 sg:person.0777452173.73 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
142 schema:familyName Hemberg
143 schema:givenName Martin
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777452173.73
145 rdf:type schema:Person
146 sg:pub.10.1007/978-3-642-04898-2_420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020142160
147 https://doi.org/10.1007/978-3-642-04898-2_420
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature08781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016478887
150 https://doi.org/10.1038/nature08781
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature10098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033777014
153 https://doi.org/10.1038/nature10098
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nbt.2450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045152751
156 https://doi.org/10.1038/nbt.2450
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nbt.2642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011351790
159 https://doi.org/10.1038/nbt.2642
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nbt.2931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008162673
162 https://doi.org/10.1038/nbt.2931
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmeth.1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022155307
165 https://doi.org/10.1038/nmeth.1315
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmeth.1482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007998558
168 https://doi.org/10.1038/nmeth.1482
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nmeth.2645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017566891
171 https://doi.org/10.1038/nmeth.2645
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmeth.2930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027021432
174 https://doi.org/10.1038/nmeth.2930
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmeth.2967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015866289
177 https://doi.org/10.1038/nmeth.2967
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nrg2934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020249428
180 https://doi.org/10.1038/nrg2934
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1471-2199-9-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885990
183 https://doi.org/10.1186/1471-2199-9-63
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1752-0509-4-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009889574
186 https://doi.org/10.1186/1752-0509-4-2
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/gb-2013-14-1-r7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043158487
189 https://doi.org/10.1186/gb-2013-14-1-r7
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/gb-2013-14-9-r95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036803445
192 https://doi.org/10.1186/gb-2013-14-9-r95
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
195 https://doi.org/10.1186/s13059-014-0550-8
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/s13059-015-0805-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018620566
198 https://doi.org/10.1186/s13059-015-0805-z
199 rdf:type schema:CreativeWork
200 sg:pub.10.2119/2006-00107.trevino schema:sameAs https://app.dimensions.ai/details/publication/pub.1068964978
201 https://doi.org/10.2119/2006-00107.trevino
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1077454889 schema:CreativeWork
204 https://doi.org/10.1006/tpbi.1995.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027444563
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/0021-9991(76)90041-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020380039
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/0022-5193(78)90326-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039101850
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.cell.2005.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003070427
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.cell.2008.09.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018463905
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.cub.2006.03.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025966713
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1073/pnas.43.7.553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008211467
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/biostatistics/kxs001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004943295
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/dnares/dsn030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014322004
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/gkv007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016098431
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1101/019141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085103885
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1101/gr.110882.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024095958
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1101/gr.177725.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033981600
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.1245316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035294760
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1214/aoms/1177704477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400514
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1214/aoms/1177729437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401678
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1214/aos/1056562461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029578751
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1242/dev.043836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043079309
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1371/journal.pbio.0040309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031857499
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1371/journal.pone.0089673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017367979
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
247 schema:name Wellcome Trust Sanger Institute, Wellcome Genome Campus, CB10 1SA, Hinxton, UK
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
250 schema:name Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...