Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Jeff Daily

ABSTRACT

BACKGROUND: Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. RESULTS: A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. CONCLUSIONS: Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library. More... »

PAGES

81

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-016-0930-z

DOI

http://dx.doi.org/10.1186/s12859-016-0930-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052522445

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26864881


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Programming Languages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pacific Northwest National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.451303.0", 
          "name": [
            "Pacific Northwest National Laboratory, High Performance Computing Group, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-30, 99352, Richland, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daily", 
        "givenName": "Jeff", 
        "id": "sg:person.016124607405.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124607405.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jpdc.2014.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005606908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2014.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005606908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/13.2.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008319186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.22.10915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010513713", 
          "https://doi.org/10.1186/1471-2105-12-221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0082138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012228952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014155557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020681127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-1-107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023265691", 
          "https://doi.org/10.1186/1756-0500-1-107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22300-6_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023336593", 
          "https://doi.org/10.1007/978-3-642-22300-6_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22300-6_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023336593", 
          "https://doi.org/10.1007/978-3-642-22300-6_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.8.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025315480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420036275.ch7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033674754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(05)80165-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045903080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1046-2023(05)80165-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045903080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050579230", 
          "https://doi.org/10.1186/1471-2105-10-421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdpsw.2014.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093399254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asap.2014.6868657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094370952"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations.\nRESULTS: A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license.\nCONCLUSIONS: Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-016-0930-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments", 
    "pagination": "81", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa2e9802ae120e1ca69b26492de166372dccd13944a466dc12c815371beff3a5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26864881"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-016-0930-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052522445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-016-0930-z", 
      "https://app.dimensions.ai/details/publication/pub.1052522445"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12859-016-0930-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-0930-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-0930-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-0930-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-016-0930-z'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      55 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-016-0930-z schema:about N22fd006eb9c944efab3eb84eb07713da
2 N45e5b6e8191f4d0690a082189b78288d
3 N4a6f690ee42040baa73cba2c7bdbbcc0
4 N620d8eba8ccd46958d3961ed261dddb2
5 N75bb94c85bf64668922d219acdf9d176
6 N7ecae6d1c8f54471b5be2c8be3efcf49
7 Nd27eabf42c034493a2c1528c351ed8ea
8 Ne1ea11cf4ec945fcbc3dd4ee353fc7ff
9 Nef7c9d3bddb44aa49e8b21b3e1f6425f
10 anzsrc-for:08
11 anzsrc-for:0802
12 schema:author Nb24265e71d71407a98152e226ff668fe
13 schema:citation sg:pub.10.1007/978-3-642-22300-6_32
14 sg:pub.10.1186/1471-2105-10-421
15 sg:pub.10.1186/1471-2105-12-221
16 sg:pub.10.1186/1756-0500-1-107
17 https://doi.org/10.1016/0022-2836(82)90398-9
18 https://doi.org/10.1016/j.jpdc.2014.08.009
19 https://doi.org/10.1016/s0022-2836(05)80360-2
20 https://doi.org/10.1016/s1046-2023(05)80165-3
21 https://doi.org/10.1073/pnas.89.22.10915
22 https://doi.org/10.1093/bioinformatics/13.2.145
23 https://doi.org/10.1093/bioinformatics/16.8.699
24 https://doi.org/10.1093/bioinformatics/btl582
25 https://doi.org/10.1093/nar/gku989
26 https://doi.org/10.1109/asap.2014.6868657
27 https://doi.org/10.1109/ipdpsw.2014.108
28 https://doi.org/10.1201/9781420036275.ch7
29 https://doi.org/10.1371/journal.pone.0082138
30 schema:datePublished 2016-12
31 schema:datePublishedReg 2016-12-01
32 schema:description BACKGROUND: Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. RESULTS: A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. CONCLUSIONS: Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N2f259d03826e4c808a8266f857aa1962
37 N7d1bb4792e784a388ba25a19c8ca57ec
38 sg:journal.1023786
39 schema:name Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
40 schema:pagination 81
41 schema:productId N4dbe0399bd764adeb26914f946cbe89c
42 N707508540a0140dca264d2b9658fee82
43 Ncf47379410e14e4f94baca86889ee51a
44 Ne922e1b6698f44a7b2efb9bfd97df79f
45 Neaae442e2cc442be95cf0afb3a7d292f
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052522445
47 https://doi.org/10.1186/s12859-016-0930-z
48 schema:sdDatePublished 2019-04-10T19:15
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N9ffc7bbf89eb4bd9a68f8eed9dbe3031
51 schema:url http://link.springer.com/10.1186%2Fs12859-016-0930-z
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N22fd006eb9c944efab3eb84eb07713da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Sequence Alignment
57 rdf:type schema:DefinedTerm
58 N2f259d03826e4c808a8266f857aa1962 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N45e5b6e8191f4d0690a082189b78288d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Programming Languages
62 rdf:type schema:DefinedTerm
63 N4a6f690ee42040baa73cba2c7bdbbcc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Algorithms
65 rdf:type schema:DefinedTerm
66 N4dbe0399bd764adeb26914f946cbe89c schema:name readcube_id
67 schema:value fa2e9802ae120e1ca69b26492de166372dccd13944a466dc12c815371beff3a5
68 rdf:type schema:PropertyValue
69 N620d8eba8ccd46958d3961ed261dddb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Software
71 rdf:type schema:DefinedTerm
72 N707508540a0140dca264d2b9658fee82 schema:name nlm_unique_id
73 schema:value 100965194
74 rdf:type schema:PropertyValue
75 N75bb94c85bf64668922d219acdf9d176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Sequence Analysis, Protein
77 rdf:type schema:DefinedTerm
78 N7d1bb4792e784a388ba25a19c8ca57ec schema:volumeNumber 17
79 rdf:type schema:PublicationVolume
80 N7ecae6d1c8f54471b5be2c8be3efcf49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Databases, Factual
82 rdf:type schema:DefinedTerm
83 N9ffc7bbf89eb4bd9a68f8eed9dbe3031 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nb24265e71d71407a98152e226ff668fe rdf:first sg:person.016124607405.89
86 rdf:rest rdf:nil
87 Ncf47379410e14e4f94baca86889ee51a schema:name pubmed_id
88 schema:value 26864881
89 rdf:type schema:PropertyValue
90 Nd27eabf42c034493a2c1528c351ed8ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Computational Biology
92 rdf:type schema:DefinedTerm
93 Ne1ea11cf4ec945fcbc3dd4ee353fc7ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Proteins
95 rdf:type schema:DefinedTerm
96 Ne922e1b6698f44a7b2efb9bfd97df79f schema:name dimensions_id
97 schema:value pub.1052522445
98 rdf:type schema:PropertyValue
99 Neaae442e2cc442be95cf0afb3a7d292f schema:name doi
100 schema:value 10.1186/s12859-016-0930-z
101 rdf:type schema:PropertyValue
102 Nef7c9d3bddb44aa49e8b21b3e1f6425f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
109 schema:name Computation Theory and Mathematics
110 rdf:type schema:DefinedTerm
111 sg:journal.1023786 schema:issn 1471-2105
112 schema:name BMC Bioinformatics
113 rdf:type schema:Periodical
114 sg:person.016124607405.89 schema:affiliation https://www.grid.ac/institutes/grid.451303.0
115 schema:familyName Daily
116 schema:givenName Jeff
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124607405.89
118 rdf:type schema:Person
119 sg:pub.10.1007/978-3-642-22300-6_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023336593
120 https://doi.org/10.1007/978-3-642-22300-6_32
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1471-2105-10-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050579230
123 https://doi.org/10.1186/1471-2105-10-421
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/1471-2105-12-221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010513713
126 https://doi.org/10.1186/1471-2105-12-221
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/1756-0500-1-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023265691
129 https://doi.org/10.1186/1756-0500-1-107
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jpdc.2014.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005606908
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s1046-2023(05)80165-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045903080
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.89.22.10915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234644
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/bioinformatics/13.2.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008319186
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/bioinformatics/16.8.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025315480
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/bioinformatics/btl582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014155557
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/nar/gku989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020681127
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/asap.2014.6868657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094370952
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/ipdpsw.2014.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093399254
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1201/9781420036275.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033674754
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1371/journal.pone.0082138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012228952
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.451303.0 schema:alternateName Pacific Northwest National Laboratory
158 schema:name Pacific Northwest National Laboratory, High Performance Computing Group, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-30, 99352, Richland, WA, USA
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...