AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Joe G Greener, Michael JE Sternberg

ABSTRACT

BACKGROUND: Despite being hugely important in biological processes, allostery is poorly understood and no universal mechanism has been discovered. Allosteric drugs are a largely unexplored prospect with many potential advantages over orthosteric drugs. Computational methods to predict allosteric sites on proteins are needed to aid the discovery of allosteric drugs, as well as to advance our fundamental understanding of allostery. RESULTS: AlloPred, a novel method to predict allosteric pockets on proteins, was developed. AlloPred uses perturbation of normal modes alongside pocket descriptors in a machine learning approach that ranks the pockets on a protein. AlloPred ranked an allosteric pocket top for 23 out of 40 known allosteric proteins, showing comparable and complementary performance to two existing methods. In 28 of 40 cases an allosteric pocket was ranked first or second. The AlloPred web server, freely available at http://www.sbg.bio.ic.ac.uk/allopred/home, allows visualisation and analysis of predictions. The source code and dataset information are also available from this site. CONCLUSIONS: Perturbation of normal modes can enhance our ability to predict allosteric sites on proteins. Computational methods such as AlloPred assist drug discovery efforts by suggesting sites on proteins for further experimental study. More... »

PAGES

335

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12859-015-0771-1

DOI

http://dx.doi.org/10.1186/s12859-015-0771-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037746989

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26493317


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Allosteric Site", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greener", 
        "givenName": "Joe G", 
        "id": "sg:person.01125667161.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125667161.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sternberg", 
        "givenName": "Michael JE", 
        "id": "sg:person.0611736450.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0901811106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001580829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1001651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001805528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002302557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-pharmtox-010611-134525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002771490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003659702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004774689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005524314", 
          "https://doi.org/10.1038/nature13001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5438.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008384725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-10-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013183453", 
          "https://doi.org/10.1186/1472-6807-10-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0914611107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015384533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019282557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020681127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021204998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2005.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021613974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022368565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024372108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024378366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-177-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028981750", 
          "https://doi.org/10.1007/978-1-59745-177-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-177-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028981750", 
          "https://doi.org/10.1007/978-1-59745-177-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034998689", 
          "https://doi.org/10.1186/1471-2105-10-168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034998689", 
          "https://doi.org/10.1186/1471-2105-10-168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-10-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037924503", 
          "https://doi.org/10.1186/1472-6807-10-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038894722", 
          "https://doi.org/10.1186/1471-2105-10-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039646233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.107.105270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040245667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041399330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.abb.2013.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044355207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tips.2014.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044696048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045767474", 
          "https://doi.org/10.1186/1471-2105-13-273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045767474", 
          "https://doi.org/10.1186/1471-2105-13-273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046764357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmgm.2012.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049136005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049200901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051834763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052045352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja504810z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052149656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct300395h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055424337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1568026611313010002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069194563"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Despite being hugely important in biological processes, allostery is poorly understood and no universal mechanism has been discovered. Allosteric drugs are a largely unexplored prospect with many potential advantages over orthosteric drugs. Computational methods to predict allosteric sites on proteins are needed to aid the discovery of allosteric drugs, as well as to advance our fundamental understanding of allostery.\nRESULTS: AlloPred, a novel method to predict allosteric pockets on proteins, was developed. AlloPred uses perturbation of normal modes alongside pocket descriptors in a machine learning approach that ranks the pockets on a protein. AlloPred ranked an allosteric pocket top for 23 out of 40 known allosteric proteins, showing comparable and complementary performance to two existing methods. In 28 of 40 cases an allosteric pocket was ranked first or second. The AlloPred web server, freely available at http://www.sbg.bio.ic.ac.uk/allopred/home, allows visualisation and analysis of predictions. The source code and dataset information are also available from this site.\nCONCLUSIONS: Perturbation of normal modes can enhance our ability to predict allosteric sites on proteins. Computational methods such as AlloPred assist drug discovery efforts by suggesting sites on proteins for further experimental study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12859-015-0771-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis", 
    "pagination": "335", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3d051bc3a62ecc1f3ab33bf1c32481d9f691dd7ab2c4b3f695fddb9ec6d6db5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26493317"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12859-015-0771-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037746989"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12859-015-0771-1", 
      "https://app.dimensions.ai/details/publication/pub.1037746989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12859-015-0771-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-015-0771-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-015-0771-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-015-0771-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-015-0771-1'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      70 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12859-015-0771-1 schema:about N3361ad2e92694646a97055c0827be6f4
2 Na3dcacce220643ee8ce1351371b9c5f7
3 Nb24516fce3c9418da59c13d5d1292467
4 Nc40631924fed4a4c9979e30dc6715caf
5 Nec99aacaff2440d8a8eae1626403e59c
6 anzsrc-for:06
7 anzsrc-for:0601
8 schema:author N2490bde9120f4a13815dbea9bc51d7b2
9 schema:citation sg:pub.10.1007/978-1-59745-177-2_5
10 sg:pub.10.1038/nature13001
11 sg:pub.10.1186/1471-2105-10-1
12 sg:pub.10.1186/1471-2105-10-168
13 sg:pub.10.1186/1471-2105-13-273
14 sg:pub.10.1186/1472-6807-10-1
15 sg:pub.10.1186/1472-6807-10-9
16 https://doi.org/10.1002/prot.20232
17 https://doi.org/10.1016/j.abb.2013.07.025
18 https://doi.org/10.1016/j.cell.2013.03.034
19 https://doi.org/10.1016/j.jmgm.2012.07.006
20 https://doi.org/10.1016/j.sbi.2005.08.007
21 https://doi.org/10.1016/j.tips.2014.03.006
22 https://doi.org/10.1021/ct300395h
23 https://doi.org/10.1021/ja504810z
24 https://doi.org/10.1073/pnas.0901811106
25 https://doi.org/10.1073/pnas.0914611107
26 https://doi.org/10.1093/bioinformatics/bth261
27 https://doi.org/10.1093/bioinformatics/btr168
28 https://doi.org/10.1093/bioinformatics/btt399
29 https://doi.org/10.1093/bioinformatics/btu002
30 https://doi.org/10.1093/bioinformatics/btv169
31 https://doi.org/10.1093/nar/gkt1243
32 https://doi.org/10.1093/nar/gkt284
33 https://doi.org/10.1093/nar/gkt460
34 https://doi.org/10.1093/nar/gkt864
35 https://doi.org/10.1093/nar/gku989
36 https://doi.org/10.1103/physrevlett.77.1905
37 https://doi.org/10.1126/science.286.5438.295
38 https://doi.org/10.1146/annurev-pharmtox-010611-134525
39 https://doi.org/10.1371/journal.pbio.1001651
40 https://doi.org/10.1371/journal.pcbi.1000484
41 https://doi.org/10.1371/journal.pcbi.1000531
42 https://doi.org/10.1371/journal.pcbi.1002148
43 https://doi.org/10.1529/biophysj.107.105270
44 https://doi.org/10.2174/1568026611313010002
45 schema:datePublished 2015-12
46 schema:datePublishedReg 2015-12-01
47 schema:description BACKGROUND: Despite being hugely important in biological processes, allostery is poorly understood and no universal mechanism has been discovered. Allosteric drugs are a largely unexplored prospect with many potential advantages over orthosteric drugs. Computational methods to predict allosteric sites on proteins are needed to aid the discovery of allosteric drugs, as well as to advance our fundamental understanding of allostery. RESULTS: AlloPred, a novel method to predict allosteric pockets on proteins, was developed. AlloPred uses perturbation of normal modes alongside pocket descriptors in a machine learning approach that ranks the pockets on a protein. AlloPred ranked an allosteric pocket top for 23 out of 40 known allosteric proteins, showing comparable and complementary performance to two existing methods. In 28 of 40 cases an allosteric pocket was ranked first or second. The AlloPred web server, freely available at http://www.sbg.bio.ic.ac.uk/allopred/home, allows visualisation and analysis of predictions. The source code and dataset information are also available from this site. CONCLUSIONS: Perturbation of normal modes can enhance our ability to predict allosteric sites on proteins. Computational methods such as AlloPred assist drug discovery efforts by suggesting sites on proteins for further experimental study.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf Nb9b0c910802f4989bba2c6425997126f
52 Nc748805306d44b5dbc9e4fbec090febe
53 sg:journal.1023786
54 schema:name AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis
55 schema:pagination 335
56 schema:productId N2f7b36b295d54b84a63d5bf126a2634f
57 N398a0416f45d48babae43ac4fc7729de
58 N841d28fae4034f49ab4fc7c98863f7b7
59 Ndc5f7c0c1e69493cb9e31d48dd6b06b1
60 Nf490463e9dc1492abe6c75591025ef7c
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037746989
62 https://doi.org/10.1186/s12859-015-0771-1
63 schema:sdDatePublished 2019-04-11T01:07
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N0d507d4f5edc40f18fa43b3cd2075428
66 schema:url http://link.springer.com/10.1186%2Fs12859-015-0771-1
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0d507d4f5edc40f18fa43b3cd2075428 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N2490bde9120f4a13815dbea9bc51d7b2 rdf:first sg:person.01125667161.40
73 rdf:rest N9b561625857c4408b4d1ed422db2a7ea
74 N2f7b36b295d54b84a63d5bf126a2634f schema:name doi
75 schema:value 10.1186/s12859-015-0771-1
76 rdf:type schema:PropertyValue
77 N3361ad2e92694646a97055c0827be6f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Protein Conformation
79 rdf:type schema:DefinedTerm
80 N398a0416f45d48babae43ac4fc7729de schema:name dimensions_id
81 schema:value pub.1037746989
82 rdf:type schema:PropertyValue
83 N841d28fae4034f49ab4fc7c98863f7b7 schema:name pubmed_id
84 schema:value 26493317
85 rdf:type schema:PropertyValue
86 N9b561625857c4408b4d1ed422db2a7ea rdf:first sg:person.0611736450.97
87 rdf:rest rdf:nil
88 Na3dcacce220643ee8ce1351371b9c5f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Allosteric Site
90 rdf:type schema:DefinedTerm
91 Nb24516fce3c9418da59c13d5d1292467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Algorithms
93 rdf:type schema:DefinedTerm
94 Nb9b0c910802f4989bba2c6425997126f schema:volumeNumber 16
95 rdf:type schema:PublicationVolume
96 Nc40631924fed4a4c9979e30dc6715caf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Proteins
98 rdf:type schema:DefinedTerm
99 Nc748805306d44b5dbc9e4fbec090febe schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 Ndc5f7c0c1e69493cb9e31d48dd6b06b1 schema:name nlm_unique_id
102 schema:value 100965194
103 rdf:type schema:PropertyValue
104 Nec99aacaff2440d8a8eae1626403e59c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Ligands
106 rdf:type schema:DefinedTerm
107 Nf490463e9dc1492abe6c75591025ef7c schema:name readcube_id
108 schema:value b3d051bc3a62ecc1f3ab33bf1c32481d9f691dd7ab2c4b3f695fddb9ec6d6db5
109 rdf:type schema:PropertyValue
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biochemistry and Cell Biology
115 rdf:type schema:DefinedTerm
116 sg:journal.1023786 schema:issn 1471-2105
117 schema:name BMC Bioinformatics
118 rdf:type schema:Periodical
119 sg:person.01125667161.40 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
120 schema:familyName Greener
121 schema:givenName Joe G
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125667161.40
123 rdf:type schema:Person
124 sg:person.0611736450.97 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
125 schema:familyName Sternberg
126 schema:givenName Michael JE
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97
128 rdf:type schema:Person
129 sg:pub.10.1007/978-1-59745-177-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028981750
130 https://doi.org/10.1007/978-1-59745-177-2_5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature13001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005524314
133 https://doi.org/10.1038/nature13001
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/1471-2105-10-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038894722
136 https://doi.org/10.1186/1471-2105-10-1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/1471-2105-10-168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034998689
139 https://doi.org/10.1186/1471-2105-10-168
140 rdf:type schema:CreativeWork
141 sg:pub.10.1186/1471-2105-13-273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045767474
142 https://doi.org/10.1186/1471-2105-13-273
143 rdf:type schema:CreativeWork
144 sg:pub.10.1186/1472-6807-10-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037924503
145 https://doi.org/10.1186/1472-6807-10-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1186/1472-6807-10-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183453
148 https://doi.org/10.1186/1472-6807-10-9
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/prot.20232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049200901
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.abb.2013.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044355207
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.cell.2013.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039646233
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jmgm.2012.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049136005
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.sbi.2005.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021613974
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.tips.2014.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044696048
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/ct300395h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055424337
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/ja504810z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052149656
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.0901811106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001580829
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.0914611107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015384533
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/bth261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024372108
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/bioinformatics/btr168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003659702
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/bioinformatics/btt399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004774689
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/bioinformatics/btu002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019282557
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/bioinformatics/btv169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021204998
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/nar/gkt1243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046764357
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/nar/gkt284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024378366
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/nar/gkt460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002302557
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/nar/gkt864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051834763
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/nar/gku989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020681127
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.77.1905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813751
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.286.5438.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008384725
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1146/annurev-pharmtox-010611-134525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002771490
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pbio.1001651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001805528
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pcbi.1000484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052045352
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pcbi.1000531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022368565
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1371/journal.pcbi.1002148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041399330
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1529/biophysj.107.105270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040245667
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2174/1568026611313010002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069194563
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
209 schema:name Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...