An evidence-based approach to identify aging-related genes in Caenorhabditis elegans View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Alison Callahan, Juan José Cifuentes, Michel Dumontier

ABSTRACT

BACKGROUND: Extensive studies have been carried out on Caenorhabditis elegans as a model organism to elucidate mechanisms of aging and the effects of perturbing known aging-related genes on lifespan and behavior. This research has generated large amounts of experimental data that is increasingly difficult to integrate and analyze with existing databases and domain knowledge. To address this challenge, we demonstrate a scalable and effective approach for automatic evidence gathering and evaluation that leverages existing experimental data and literature-curated facts to identify genes involved in aging and lifespan regulation in C. elegans. RESULTS: We developed a semantic knowledge base for aging by integrating data about C. elegans genes from WormBase with data about 2005 human and model organism genes from GenAge and 149 genes from GenDR, and with the Bio2RDF network of linked data for the life sciences. Using HyQue (a Semantic Web tool for hypothesis-based querying and evaluation) to interrogate this knowledge base, we examined 48,231 C. elegans genes for their role in modulating lifespan and aging. HyQue identified 24 novel but well-supported candidate aging-related genes for further experimental validation. CONCLUSIONS: We use semantic technologies to discover candidate aging genes whose effects on lifespan are not yet well understood. Our customized HyQue system, the aging research knowledge base it operates over, and HyQue evaluations of all C. elegans genes are freely available at http://hyque.semanticscience.org . More... »

PAGES

40

References to SciGraph publications

  • 2003-07. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans in NATURE
  • 2001-06. The mice that warred. in SCIENTIFIC AMERICAN
  • 1993-08. Design methods for scientific hypothesis formation and their application to molecular biology in MACHINE LEARNING
  • 2007-12. FUNC: a package for detecting significant associations between gene sets and ontological annotations in BMC BIOINFORMATICS
  • 2014-12. Automatically exposing OpenLifeData via SADI semantic Web Services in JOURNAL OF BIOMEDICAL SEMANTICS
  • 2010-03. The genetics of ageing in NATURE
  • 1997-11. Chaperoning extended life in NATURE
  • 1993-12. A C. elegans mutant that lives twice as long as wild type in NATURE
  • 2006-12. A case study in pathway knowledgebase verification in BMC BIOINFORMATICS
  • 2013-03. A large-scale evaluation of computational protein function prediction in NATURE METHODS
  • 2011-12. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related in BMC GENOMICS
  • 2011-12. HyQue: evaluating hypotheses using Semantic Web technologies in JOURNAL OF BIOMEDICAL SEMANTICS
  • 2013. See… in WÖRTERBUCH GEOTECHNIK/DICTIONARY GEOTECHNICAL ENGINEERING
  • 2012. Evaluating Scientific Hypotheses Using the SPARQL Inferencing Notation in THE SEMANTIC WEB: RESEARCH AND APPLICATIONS
  • 2007-12. Predicting protein function from sequence and structure in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2013. Bio2RDF Release 2: Improved Coverage, Interoperability and Provenance of Life Science Linked Data in THE SEMANTIC WEB: SEMANTICS AND BIG DATA
  • 2014-01. Identifying evolutionarily conserved genes in the dietary restriction response using bioinformatics and subsequent testing in Caenorhabditis elegans in GENES & NUTRITION
  • 2008-12. iRefIndex: A consolidated protein interaction database with provenance in BMC BIOINFORMATICS
  • 2001-05. The Semantic Web in SCIENTIFIC AMERICAN
  • 2012-03-01. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks in NATURE PROTOCOLS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12859-015-0469-4

    DOI

    http://dx.doi.org/10.1186/s12859-015-0469-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045705019

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25888240


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis elegans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Caenorhabditis elegans Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Ontology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Information Storage and Retrieval", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Stanford Center for Biomedical Informatics Research, School of Medicine, Stanford University, Stanford California, AC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Callahan", 
            "givenName": "Alison", 
            "id": "sg:person.01200144035.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200144035.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pontifical Catholic University of Chile", 
              "id": "https://www.grid.ac/institutes/grid.7870.8", 
              "name": [
                "Molecular Bioinformatics Laboratory, Millennium Institute on Immunology and Immunotherapy, 8330025, 49 Santiago, CP, Portugal", 
                "Departamento de Gen\u00e9tica Molecular y Microbiolog\u00eda, Facultad de Ciencias Biol\u00f3gicas, Pontificia Universidad Cat\u00f3lica de Chile, Alameda 340, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cifuentes", 
            "givenName": "Juan Jos\u00e9", 
            "id": "sg:person.01307721561.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307721561.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Stanford Center for Biomedical Informatics Research, School of Medicine, Stanford University, Stanford California, AC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dumontier", 
            "givenName": "Michel", 
            "id": "sg:person.01324655201.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.brainres.2011.03.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000802173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mad.2010.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000993898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1998.2144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002190651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbn056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004892751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gene.2013.04.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005161773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.105.050013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007042311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.105.050013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007042311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1214467110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007098216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007665196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/ijhc.1995.1081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008349925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm200105313442207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008377305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00993062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008897089", 
              "https://doi.org/10.1007/bf00993062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008978115", 
              "https://doi.org/10.1038/nature08980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008978115", 
              "https://doi.org/10.1038/nature08980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009179681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0801030105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009480352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2013.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010018340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2014.00018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010131451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/366461a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011026745", 
              "https://doi.org/10.1038/366461a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33335-4_193375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011944115", 
              "https://doi.org/10.1007/978-3-642-33335-4_193375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(01)00241-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012497717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.c3584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013090190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/24.1.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013345719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0020085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013357396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-1480-2-s2-s3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013483045", 
              "https://doi.org/10.1186/2041-1480-2-s2-s3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/426976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014244981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015408698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/4284.4286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017140958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1474-9728.2003.00043.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019691092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1091/mbc.e03-07-0532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019889746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0040519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021384076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1474-9726.2009.00493.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023364691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1474-9726.2009.00493.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023364691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbl004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025273278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1165620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027153137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027198313", 
              "https://doi.org/10.1038/nrm2281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028493181", 
              "https://doi.org/10.1186/1471-2164-12-27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2012.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030124536", 
              "https://doi.org/10.1038/nprot.2012.016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.drudis.2012.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030614789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2008.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030920077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0933-3657(03)00048-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031641961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0933-3657(03)00048-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031641961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmet.2012.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031905309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-1480-5-46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032867718", 
              "https://doi.org/10.1186/2041-1480-5-46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/wnr.0b013e328133265b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033949688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/wnr.0b013e328133265b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033949688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035677571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036184319", 
              "https://doi.org/10.1186/1471-2105-9-405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3274805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038477351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biochem.77.061206.171059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039140014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/wsbm.1200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040747183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.5210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041680159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042720804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044106351", 
              "https://doi.org/10.1186/1471-2105-8-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-30284-8_50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045437595", 
              "https://doi.org/10.1007/978-3-642-30284-8_50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046100259", 
              "https://doi.org/10.1038/nmeth.2340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046117474", 
              "https://doi.org/10.1186/1471-2105-7-196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2tx20037f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046299970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38288-8_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046984378", 
              "https://doi.org/10.1007/978-3-642-38288-8_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2mb05255e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047373525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2012/276803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047495999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12263-013-0363-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047595370", 
              "https://doi.org/10.1007/s12263-013-0363-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12263-013-0363-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047595370", 
              "https://doi.org/10.1007/s12263-013-0363-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1003325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048226239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1083701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048646491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/36237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050071178", 
              "https://doi.org/10.1038/36237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050814907", 
              "https://doi.org/10.1038/nature01789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050814907", 
              "https://doi.org/10.1038/nature01789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052164347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052669813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/sj.embor.7400422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053646410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/sj.embor.7400422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053646410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0501-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056527616", 
              "https://doi.org/10.1038/scientificamerican0501-34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0601-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056542641", 
              "https://doi.org/10.1038/scientificamerican0601-34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/421052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058711871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/7.3.301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059414056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2014.2355218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061541328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062445557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2200/s00334ed1v01y201102wbe001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069288216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074632773", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077019999", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077075259", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082984655", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bibm.2013.6732521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095744436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812702456_0010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096062026"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "BACKGROUND: Extensive studies have been carried out on Caenorhabditis elegans as a model organism to elucidate mechanisms of aging and the effects of perturbing known aging-related genes on lifespan and behavior. This research has generated large amounts of experimental data that is increasingly difficult to integrate and analyze with existing databases and domain knowledge. To address this challenge, we demonstrate a scalable and effective approach for automatic evidence gathering and evaluation that leverages existing experimental data and literature-curated facts to identify genes involved in aging and lifespan regulation in C. elegans.\nRESULTS: We developed a semantic knowledge base for aging by integrating data about C. elegans genes from WormBase with data about 2005 human and model organism genes from GenAge and 149 genes from GenDR, and with the Bio2RDF network of linked data for the life sciences. Using HyQue (a Semantic Web tool for hypothesis-based querying and evaluation) to interrogate this knowledge base, we examined 48,231 C. elegans genes for their role in modulating lifespan and aging. HyQue identified 24 novel but well-supported candidate aging-related genes for further experimental validation.\nCONCLUSIONS: We use semantic technologies to discover candidate aging genes whose effects on lifespan are not yet well understood. Our customized HyQue system, the aging research knowledge base it operates over, and HyQue evaluations of all C. elegans genes are freely available at http://hyque.semanticscience.org .", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12859-015-0469-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "An evidence-based approach to identify aging-related genes in Caenorhabditis elegans", 
        "pagination": "40", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d9b6980a53f9974233f16b71a50786049cca43ba50f8ca7f1d42e8ab330eb571"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25888240"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12859-015-0469-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045705019"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12859-015-0469-4", 
          "https://app.dimensions.ai/details/publication/pub.1045705019"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89804_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs12859-015-0469-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12859-015-0469-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12859-015-0469-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12859-015-0469-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12859-015-0469-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    381 TRIPLES      21 PREDICATES      118 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12859-015-0469-4 schema:about N29245a87b8924ddab226b3d78a41010d
    2 N3b29f240fd7145fd8d62372e21fa8ca4
    3 N3d972ea4423e42e1a0e1a50cc7c87449
    4 N691ff4e0362446068ba3cd8e249550b8
    5 N7d8d12d8c52e49258939bc232f930779
    6 N95cd70c5ac934d559d254e02dece4b4e
    7 Na257c06236bb4f16b3c12c170d3dd8e1
    8 Nba9b2707dc1f4271983eb21802a493f4
    9 Ncd0167ea327242fb985d4a1d7321f2aa
    10 Nd81c41d7b45647ca9cc83ef25bbc03f5
    11 Nedfbe461e87a42b58a4faa78ff87ed09
    12 Nf37a250cd69345a6a62d6ddc942b0ef2
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N2b9a9960943c4df28dd475f145a2ecd8
    16 schema:citation sg:pub.10.1007/978-3-642-30284-8_50
    17 sg:pub.10.1007/978-3-642-33335-4_193375
    18 sg:pub.10.1007/978-3-642-38288-8_14
    19 sg:pub.10.1007/bf00993062
    20 sg:pub.10.1007/s12263-013-0363-5
    21 sg:pub.10.1038/36237
    22 sg:pub.10.1038/366461a0
    23 sg:pub.10.1038/nature01789
    24 sg:pub.10.1038/nature08980
    25 sg:pub.10.1038/nmeth.2340
    26 sg:pub.10.1038/nprot.2012.016
    27 sg:pub.10.1038/nrm2281
    28 sg:pub.10.1038/scientificamerican0501-34
    29 sg:pub.10.1038/scientificamerican0601-34
    30 sg:pub.10.1186/1471-2105-7-196
    31 sg:pub.10.1186/1471-2105-8-41
    32 sg:pub.10.1186/1471-2105-9-405
    33 sg:pub.10.1186/1471-2164-12-27
    34 sg:pub.10.1186/2041-1480-2-s2-s3
    35 sg:pub.10.1186/2041-1480-5-46
    36 https://app.dimensions.ai/details/publication/pub.1074632773
    37 https://app.dimensions.ai/details/publication/pub.1077019999
    38 https://app.dimensions.ai/details/publication/pub.1077075259
    39 https://app.dimensions.ai/details/publication/pub.1082984655
    40 https://doi.org/10.1002/wsbm.1200
    41 https://doi.org/10.1006/ijhc.1995.1081
    42 https://doi.org/10.1006/jmbi.1998.2144
    43 https://doi.org/10.1006/jmbi.2000.5210
    44 https://doi.org/10.1016/j.brainres.2011.03.052
    45 https://doi.org/10.1016/j.cmet.2012.02.013
    46 https://doi.org/10.1016/j.drudis.2012.11.012
    47 https://doi.org/10.1016/j.gene.2013.04.045
    48 https://doi.org/10.1016/j.jbi.2008.03.004
    49 https://doi.org/10.1016/j.mad.2010.10.001
    50 https://doi.org/10.1016/j.tig.2013.01.010
    51 https://doi.org/10.1016/s0933-3657(03)00048-4
    52 https://doi.org/10.1016/s0960-9822(01)00241-x
    53 https://doi.org/10.1038/sj.embor.7400422
    54 https://doi.org/10.1039/c2mb05255e
    55 https://doi.org/10.1039/c2tx20037f
    56 https://doi.org/10.1046/j.1474-9728.2003.00043.x
    57 https://doi.org/10.1056/nejm200105313442207
    58 https://doi.org/10.1073/pnas.0801030105
    59 https://doi.org/10.1073/pnas.1214467110
    60 https://doi.org/10.1086/421052
    61 https://doi.org/10.1091/mbc.e03-07-0532
    62 https://doi.org/10.1093/bib/bbl004
    63 https://doi.org/10.1093/bib/bbn056
    64 https://doi.org/10.1093/bioinformatics/7.3.301
    65 https://doi.org/10.1093/bioinformatics/bth905
    66 https://doi.org/10.1093/bioinformatics/btt628
    67 https://doi.org/10.1093/bioinformatics/btu170
    68 https://doi.org/10.1093/nar/24.1.32
    69 https://doi.org/10.1093/nar/gkh021
    70 https://doi.org/10.1093/nar/gks1155
    71 https://doi.org/10.1093/nar/gkt1063
    72 https://doi.org/10.1097/wnr.0b013e328133265b
    73 https://doi.org/10.1101/gr.3274805
    74 https://doi.org/10.1109/bibm.2013.6732521
    75 https://doi.org/10.1109/tcbb.2014.2355218
    76 https://doi.org/10.1111/j.1474-9726.2009.00493.x
    77 https://doi.org/10.1126/science.1065986
    78 https://doi.org/10.1126/science.1083701
    79 https://doi.org/10.1126/science.1165620
    80 https://doi.org/10.1136/bmj.c3584
    81 https://doi.org/10.1142/9789812702456_0010
    82 https://doi.org/10.1145/4284.4286
    83 https://doi.org/10.1146/annurev.biochem.77.061206.171059
    84 https://doi.org/10.1155/2012/276803
    85 https://doi.org/10.1155/2014/426976
    86 https://doi.org/10.1371/journal.pgen.1002834
    87 https://doi.org/10.1371/journal.pgen.1003325
    88 https://doi.org/10.1371/journal.pone.0020085
    89 https://doi.org/10.1371/journal.pone.0040519
    90 https://doi.org/10.1534/genetics.105.050013
    91 https://doi.org/10.2200/s00334ed1v01y201102wbe001
    92 https://doi.org/10.3389/fgene.2014.00018
    93 schema:datePublished 2015-12
    94 schema:datePublishedReg 2015-12-01
    95 schema:description BACKGROUND: Extensive studies have been carried out on Caenorhabditis elegans as a model organism to elucidate mechanisms of aging and the effects of perturbing known aging-related genes on lifespan and behavior. This research has generated large amounts of experimental data that is increasingly difficult to integrate and analyze with existing databases and domain knowledge. To address this challenge, we demonstrate a scalable and effective approach for automatic evidence gathering and evaluation that leverages existing experimental data and literature-curated facts to identify genes involved in aging and lifespan regulation in C. elegans. RESULTS: We developed a semantic knowledge base for aging by integrating data about C. elegans genes from WormBase with data about 2005 human and model organism genes from GenAge and 149 genes from GenDR, and with the Bio2RDF network of linked data for the life sciences. Using HyQue (a Semantic Web tool for hypothesis-based querying and evaluation) to interrogate this knowledge base, we examined 48,231 C. elegans genes for their role in modulating lifespan and aging. HyQue identified 24 novel but well-supported candidate aging-related genes for further experimental validation. CONCLUSIONS: We use semantic technologies to discover candidate aging genes whose effects on lifespan are not yet well understood. Our customized HyQue system, the aging research knowledge base it operates over, and HyQue evaluations of all C. elegans genes are freely available at http://hyque.semanticscience.org .
    96 schema:genre research_article
    97 schema:inLanguage en
    98 schema:isAccessibleForFree true
    99 schema:isPartOf Ndbbb321beb3a4a77a38b5abcf0678957
    100 Ne6e44b52f0704a648621134032af2a8d
    101 sg:journal.1023786
    102 schema:name An evidence-based approach to identify aging-related genes in Caenorhabditis elegans
    103 schema:pagination 40
    104 schema:productId N3cc28da4bbca493cbae094dee3e3357c
    105 N9adb34c55541459a86956118bd3ee19a
    106 Nbfb64b29af8344348bc131efdcadc35b
    107 Ncce75f3e2f64405e8e62a721cd41f8d9
    108 Nf0ab5b49f6d34edda4c3fbca09158734
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045705019
    110 https://doi.org/10.1186/s12859-015-0469-4
    111 schema:sdDatePublished 2019-04-11T09:56
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N6ac862b132d84c33ae3d09137e443999
    114 schema:url http://link.springer.com/10.1186%2Fs12859-015-0469-4
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N241ad66fc4b64b5fbd795705ca02052a rdf:first sg:person.01307721561.67
    119 rdf:rest Ne9b21c1bdb4f493cae5ff3177e3e6141
    120 N29245a87b8924ddab226b3d78a41010d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Caenorhabditis elegans Proteins
    122 rdf:type schema:DefinedTerm
    123 N2b9a9960943c4df28dd475f145a2ecd8 rdf:first sg:person.01200144035.80
    124 rdf:rest N241ad66fc4b64b5fbd795705ca02052a
    125 N3b29f240fd7145fd8d62372e21fa8ca4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name High-Throughput Nucleotide Sequencing
    127 rdf:type schema:DefinedTerm
    128 N3cc28da4bbca493cbae094dee3e3357c schema:name doi
    129 schema:value 10.1186/s12859-015-0469-4
    130 rdf:type schema:PropertyValue
    131 N3d972ea4423e42e1a0e1a50cc7c87449 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Animals
    133 rdf:type schema:DefinedTerm
    134 N691ff4e0362446068ba3cd8e249550b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Databases, Factual
    136 rdf:type schema:DefinedTerm
    137 N6ac862b132d84c33ae3d09137e443999 schema:name Springer Nature - SN SciGraph project
    138 rdf:type schema:Organization
    139 N7d8d12d8c52e49258939bc232f930779 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Gene Expression Profiling
    141 rdf:type schema:DefinedTerm
    142 N95cd70c5ac934d559d254e02dece4b4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Computational Biology
    144 rdf:type schema:DefinedTerm
    145 N9adb34c55541459a86956118bd3ee19a schema:name pubmed_id
    146 schema:value 25888240
    147 rdf:type schema:PropertyValue
    148 Na257c06236bb4f16b3c12c170d3dd8e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Humans
    150 rdf:type schema:DefinedTerm
    151 Nba9b2707dc1f4271983eb21802a493f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Aging
    153 rdf:type schema:DefinedTerm
    154 Nbfb64b29af8344348bc131efdcadc35b schema:name readcube_id
    155 schema:value d9b6980a53f9974233f16b71a50786049cca43ba50f8ca7f1d42e8ab330eb571
    156 rdf:type schema:PropertyValue
    157 Ncce75f3e2f64405e8e62a721cd41f8d9 schema:name nlm_unique_id
    158 schema:value 100965194
    159 rdf:type schema:PropertyValue
    160 Ncd0167ea327242fb985d4a1d7321f2aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Caenorhabditis elegans
    162 rdf:type schema:DefinedTerm
    163 Nd81c41d7b45647ca9cc83ef25bbc03f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Gene Ontology
    165 rdf:type schema:DefinedTerm
    166 Ndbbb321beb3a4a77a38b5abcf0678957 schema:issueNumber 1
    167 rdf:type schema:PublicationIssue
    168 Ne6e44b52f0704a648621134032af2a8d schema:volumeNumber 16
    169 rdf:type schema:PublicationVolume
    170 Ne9b21c1bdb4f493cae5ff3177e3e6141 rdf:first sg:person.01324655201.14
    171 rdf:rest rdf:nil
    172 Nedfbe461e87a42b58a4faa78ff87ed09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Information Storage and Retrieval
    174 rdf:type schema:DefinedTerm
    175 Nf0ab5b49f6d34edda4c3fbca09158734 schema:name dimensions_id
    176 schema:value pub.1045705019
    177 rdf:type schema:PropertyValue
    178 Nf37a250cd69345a6a62d6ddc942b0ef2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Software
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Biological Sciences
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Genetics
    186 rdf:type schema:DefinedTerm
    187 sg:journal.1023786 schema:issn 1471-2105
    188 schema:name BMC Bioinformatics
    189 rdf:type schema:Periodical
    190 sg:person.01200144035.80 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    191 schema:familyName Callahan
    192 schema:givenName Alison
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200144035.80
    194 rdf:type schema:Person
    195 sg:person.01307721561.67 schema:affiliation https://www.grid.ac/institutes/grid.7870.8
    196 schema:familyName Cifuentes
    197 schema:givenName Juan José
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307721561.67
    199 rdf:type schema:Person
    200 sg:person.01324655201.14 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    201 schema:familyName Dumontier
    202 schema:givenName Michel
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14
    204 rdf:type schema:Person
    205 sg:pub.10.1007/978-3-642-30284-8_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045437595
    206 https://doi.org/10.1007/978-3-642-30284-8_50
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/978-3-642-33335-4_193375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011944115
    209 https://doi.org/10.1007/978-3-642-33335-4_193375
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/978-3-642-38288-8_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046984378
    212 https://doi.org/10.1007/978-3-642-38288-8_14
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/bf00993062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008897089
    215 https://doi.org/10.1007/bf00993062
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s12263-013-0363-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047595370
    218 https://doi.org/10.1007/s12263-013-0363-5
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/36237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050071178
    221 https://doi.org/10.1038/36237
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/366461a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011026745
    224 https://doi.org/10.1038/366461a0
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature01789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050814907
    227 https://doi.org/10.1038/nature01789
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature08980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008978115
    230 https://doi.org/10.1038/nature08980
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nmeth.2340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046100259
    233 https://doi.org/10.1038/nmeth.2340
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nprot.2012.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030124536
    236 https://doi.org/10.1038/nprot.2012.016
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nrm2281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027198313
    239 https://doi.org/10.1038/nrm2281
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/scientificamerican0501-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056527616
    242 https://doi.org/10.1038/scientificamerican0501-34
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/scientificamerican0601-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542641
    245 https://doi.org/10.1038/scientificamerican0601-34
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/1471-2105-7-196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046117474
    248 https://doi.org/10.1186/1471-2105-7-196
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/1471-2105-8-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044106351
    251 https://doi.org/10.1186/1471-2105-8-41
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/1471-2105-9-405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036184319
    254 https://doi.org/10.1186/1471-2105-9-405
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/1471-2164-12-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028493181
    257 https://doi.org/10.1186/1471-2164-12-27
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/2041-1480-2-s2-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013483045
    260 https://doi.org/10.1186/2041-1480-2-s2-s3
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/2041-1480-5-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032867718
    263 https://doi.org/10.1186/2041-1480-5-46
    264 rdf:type schema:CreativeWork
    265 https://app.dimensions.ai/details/publication/pub.1074632773 schema:CreativeWork
    266 https://app.dimensions.ai/details/publication/pub.1077019999 schema:CreativeWork
    267 https://app.dimensions.ai/details/publication/pub.1077075259 schema:CreativeWork
    268 https://app.dimensions.ai/details/publication/pub.1082984655 schema:CreativeWork
    269 https://doi.org/10.1002/wsbm.1200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040747183
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1006/ijhc.1995.1081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008349925
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1006/jmbi.1998.2144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002190651
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1006/jmbi.2000.5210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041680159
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1016/j.brainres.2011.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802173
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1016/j.cmet.2012.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031905309
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1016/j.drudis.2012.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030614789
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1016/j.gene.2013.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005161773
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1016/j.jbi.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030920077
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1016/j.mad.2010.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000993898
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1016/j.tig.2013.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010018340
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1016/s0933-3657(03)00048-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031641961
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1016/s0960-9822(01)00241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012497717
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1038/sj.embor.7400422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053646410
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1039/c2mb05255e schema:sameAs https://app.dimensions.ai/details/publication/pub.1047373525
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1039/c2tx20037f schema:sameAs https://app.dimensions.ai/details/publication/pub.1046299970
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1046/j.1474-9728.2003.00043.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019691092
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1056/nejm200105313442207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008377305
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1073/pnas.0801030105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009480352
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1073/pnas.1214467110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007098216
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1086/421052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058711871
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1091/mbc.e03-07-0532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019889746
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1093/bib/bbl004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025273278
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1093/bib/bbn056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004892751
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1093/bioinformatics/7.3.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414056
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1093/bioinformatics/bth905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052669813
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1093/bioinformatics/btt628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015408698
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1093/nar/24.1.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013345719
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1093/nar/gkh021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007665196
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1093/nar/gks1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035677571
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1093/nar/gkt1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009179681
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1097/wnr.0b013e328133265b schema:sameAs https://app.dimensions.ai/details/publication/pub.1033949688
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1101/gr.3274805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038477351
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1109/bibm.2013.6732521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095744436
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1109/tcbb.2014.2355218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541328
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1111/j.1474-9726.2009.00493.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023364691
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1126/science.1065986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445557
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1126/science.1083701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048646491
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1126/science.1165620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027153137
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1136/bmj.c3584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013090190
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1142/9789812702456_0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096062026
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1145/4284.4286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017140958
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1146/annurev.biochem.77.061206.171059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039140014
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1155/2012/276803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047495999
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1155/2014/426976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014244981
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.1371/journal.pgen.1002834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052164347
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1371/journal.pgen.1003325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048226239
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.1371/journal.pone.0020085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013357396
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.1371/journal.pone.0040519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021384076
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1534/genetics.105.050013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007042311
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.2200/s00334ed1v01y201102wbe001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069288216
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.3389/fgene.2014.00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010131451
    374 rdf:type schema:CreativeWork
    375 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    376 schema:name Stanford Center for Biomedical Informatics Research, School of Medicine, Stanford University, Stanford California, AC, USA
    377 rdf:type schema:Organization
    378 https://www.grid.ac/institutes/grid.7870.8 schema:alternateName Pontifical Catholic University of Chile
    379 schema:name Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
    380 Molecular Bioinformatics Laboratory, Millennium Institute on Immunology and Immunotherapy, 8330025, 49 Santiago, CP, Portugal
    381 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...